python3正则表达式指南

1.正则表达式基础

1.1 简单介绍

正则表达式并不是Python的一部分。正则表达式是用于处理字符串的强大工具,拥有自己独特的语法以及一个独立的处理引擎,效率上可能不如str自带的方法,但功能十分强大。得益于这一点,在提供了正则表达式的语言里,正则表达式的语法都是一样的,区别只在于不同的编程语言实现支持的语法数量不同;但不用担心,不被支持的语法通常是不常用的部分。如果已经在其他语言里使用过正则表达式,只需要简单看一看就可以上手了。

下图展示了使用正则表达式进行匹配的流程:

正则表达式的大致匹配过程是:依次拿出表达式和文本中的字符比较,如果每一个字符都能匹配,则匹配成功;一旦有匹配不成功的字符则匹配失败。如果表达式中有量词或边界,这个过程会稍微有一些不同,但也是很好理解的,看下图中的示例以及自己多使用几次就能明白。

下图列出了Python支持的正则表达式元字符和语法:

1.2. 数量词的贪婪模式与非贪婪模式

正则表达式通常用于在文本中查找匹配的字符串。Python里数量词默认是贪婪的(在少数语言里也可能是默认非贪婪),总是尝试匹配尽可能多的字符;非贪婪的则相反,总是尝试匹配尽可能少的字符。例如:正则表达式"ab*"如果用于查找"abbbc",将找到"abbb"。而如果使用非贪婪的数量词"ab*?",将找到"a"。

1.3. 反斜杠的困扰

与大多数编程语言相同,正则表达式里使用"\"作为转义字符,这就可能造成反斜杠困扰。假如你需要匹配文本中的字符"\",那么使用编程语言表示的正则表达式里将需要4个反斜杠"\\\\":前两个和后两个分别用于在编程语言里转义成反斜杠,转换成两个反斜杠后再在正则表达式里转义成一个反斜杠。Python里的原生字符串很好地解决了这个问题,这个例子中的正则表达式可以使用r"\\"表示。同样,匹配一个数字的"\\d"可以写成r"\d"。有了原生字符串,你再也不用担心是不是漏写了反斜杠,写出来的表达式也更直观。

1.4. 匹配模式

正则表达式提供了一些可用的匹配模式,比如忽略大小写、多行匹配等,这部分内容将在Pattern类的工厂方法re.compile(pattern[, flags])中一起介绍。

2. re模块

2.1编译正则表达式

re 模块提供了 re.compile() 函数将一个字符串编译成 pattern object,用于匹配或搜索。函数原型如下:

re.compile(strPattern[, flag]): 

这个方法是Pattern类的工厂方法,用于将字符串形式的正则表达式编译为Pattern对象。 第二个参数flag是匹配模式,取值可以使用按位或运算符‘|‘表示同时生效,比如re.I | re.M。另外,你也可以在regex字符串中指定模式,比如re.compile(‘pattern‘, re.I | re.M)与re.compile(‘(?im)pattern‘)是等价的。
可选值有:

  • re.IGNORECASE:忽略大小写,同 re.I
  • re.MULTILINE:多行模式,改变^和$的行为,同 re.M
  • re.DOTALL:点任意匹配模式,让‘.‘可以匹配包括‘\n‘在内的任意字符,同 re.S
  • re.LOCALE:使预定字符类 \w \W \b \B \s \S 取决于当前区域设定, 同 re.L
  • re.ASCII:使 \w \W \b \B \s \S 只匹配 ASCII 字符,而不是 Unicode 字符,同 re.A
  • re.VERBOSE:详细模式。这个模式下正则表达式可以是多行,忽略空白字符,并可以加入注释。主要是为了让正则表达式更易读,同re.X。例如,以下两个正则表达式是等价的:
    a = re.compile(r"""\d +  # the integral part
                       \.    # the decimal point
                       \d *  # some fractional digits""", re.X)
    b = re.compile(r"\d+\.\d*")  

re提供了众多模块方法用于完成正则表达式的功能。这些方法可以使用Pattern实例的相应方法替代,唯一的好处是少写一行re.compile()代码,但同时也无法复用编译后的Pattern对象。

2.2 match

Match对象是一次匹配的结果,包含了很多关于此次匹配的信息,可以使用Match提供的可读属性或方法来获取这些信息。

属性:

string: 匹配时使用的文本。

re: 匹配时使用的Pattern对象。

pos: 文本中正则表达式开始搜索的索引。值与Pattern.match()和Pattern.seach()方法的同名参数相同。

endpos: 文本中正则表达式结束搜索的索引。值与Pattern.match()和Pattern.seach()方法的同名参数相同。

lastindex: 最后一个被捕获的分组在文本中的索引。如果没有被捕获的分组,将为None。

lastgroup: 最后一个被捕获的分组的别名。如果这个分组没有别名或者没有被捕获的分组,将为None。

方法:

group([group1, …]):
获得一个或多个分组截获的字符串;指定多个参数时将以元组形式返回。group1可以使用编号也可以使用别名;编号0代表整个匹配的子串;不填写参数时,返回group(0);没有截获字符串的组返回None;截获了多次的组返回最后一次截获的子串。

groups([default]):
以元组形式返回全部分组截获的字符串。相当于调用group(1,2,…last)。default表示没有截获字符串的组以这个值替代,默认为None。

groupdict([default]):

返回以有别名的组的别名为键、以该组截获的子串为值的字典,没有别名的组不包含在内。default含义同上。

start([group]):
返回指定的组截获的子串在string中的起始索引(子串第一个字符的索引)。group默认值为0。

end([group]):

返回指定的组截获的子串在string中的结束索引(子串最后一个字符的索引+1)。group默认值为0。

span([group]):

返回(start(group), end(group))。

expand(template):
将匹配到的分组代入template中然后返回。template中可以使用\id或\g<id>、\g<name>引用分组,但不能使用编号0。\id与\g<id>是等价的;但\10将被认为是第10个分组,如果你想表达\1之后是字符‘0‘,只能使用\g<1>0。

示例如下:

import re
m = re.match(r‘(\w+) (\w+)(?P<sign>.*)‘, ‘hello world!‘)

print "m.string:", m.string
print "m.re:", m.re
print "m.pos:", m.pos
print "m.endpos:", m.endpos
print "m.lastindex:", m.lastindex
print "m.lastgroup:", m.lastgroup

print "m.group(1,2):", m.group(1, 2)
print "m.groups():", m.groups()
print "m.groupdict():", m.groupdict()
print "m.start(2):", m.start(2)
print "m.end(2):", m.end(2)
print "m.span(2):", m.span(2)
print r"m.expand(r‘\2 \1\3‘):", m.expand(r‘\2 \1\3‘)

### output ###
# m.string: hello world!
# m.re: <_sre.SRE_Pattern object at 0x016E1A38>
# m.pos: 0
# m.endpos: 12
# m.lastindex: 3
# m.lastgroup: sign
# m.group(1,2): (‘hello‘, ‘world‘)
# m.groups(): (‘hello‘, ‘world‘, ‘!‘)
# m.groupdict(): {‘sign‘: ‘!‘}
# m.start(2): 6
# m.end(2): 11
# m.span(2): (6, 11)
# m.expand(r‘\2 \1\3‘): world hello!

2.3. Pattern

Pattern对象是一个编译好的正则表达式,通过Pattern提供的一系列方法可以对文本进行匹配查找。

Pattern不能直接实例化,必须使用re.compile()进行构造。

Pattern提供了几个可读属性用于获取表达式的相关信息:

  • pattern: 编译时用的表达式字符串。
  • flags: 编译时用的匹配模式。数字形式。
  • groups: 表达式中分组的数量。
  • groupindex: 以表达式中有别名的组的别名为键、以该组对应的编号为值的字典,没有别名的组不包含在内
import re
p = re.compile(r‘(\w+) (\w+)(?P<sign>.*)‘, re.DOTALL)

print "p.pattern:", p.pattern
print "p.flags:", p.flags
print "p.groups:", p.groups
print "p.groupindex:", p.groupindex

### output ###
# p.pattern: (\w+) (\w+)(?P<sign>.*)
# p.flags: 16
# p.groups: 3
# p.groupindex: {‘sign‘: 3}

实例方法[ | re模块方法]:

match(string[, pos[, endpos]]) | re.match(pattern, string[, flags]):
这个方法将从string的pos下标处起尝试匹配pattern;如果pattern结束时仍可匹配,则返回一个Match对象;如果匹配过程中pattern无法匹配,或者匹配未结束就已到达endpos,则返回None。

pos和endpos的默认值分别为0和len(string);re.match()无法指定这两个参数,参数flags用于编译pattern时指定匹配模式。

注意:这个方法并不是完全匹配。当pattern结束时若string还有剩余字符,仍然视为成功。想要完全匹配,可以在表达式末尾加上边界匹配符‘$‘。

示例参见2.1小节。

search(string[, pos[, endpos]]) | re.search(pattern, string[, flags]):

这个方法用于查找字符串中可以匹配成功的子串。从string的pos下标处起尝试匹配pattern,如果pattern结束时仍可匹配,则返回一个Match对象;若无法匹配,则将pos加1后重新尝试匹配;直到pos=endpos时仍无法匹配则返回None。

pos和endpos的默认值分别为0和len(string));re.search()无法指定这两个参数,参数flags用于编译pattern时指定匹配模式。

# encoding: UTF-8
import re 

# 将正则表达式编译成Pattern对象
pattern = re.compile(r‘world‘) 

# 使用search()查找匹配的子串,不存在能匹配的子串时将返回None
# 这个例子中使用match()无法成功匹配
match = pattern.search(‘hello world!‘) 

if match:
    # 使用Match获得分组信息
    print match.group() 

### 输出 ###
# world

split(string[, maxsplit]) | re.split(pattern, string[, maxsplit]):
按照能够匹配的子串将string分割后返回列表。maxsplit用于指定最大分割次数,不指定将全部分割。

import re

p = re.compile(r‘\d+‘)
print p.split(‘one1two2three3four4‘)

### output ###
# [‘one‘, ‘two‘, ‘three‘, ‘four‘, ‘‘]

findall(string[, pos[, endpos]]) | re.findall(pattern, string[, flags]):

搜索string,以列表形式返回全部能匹配的子串。

import re

p = re.compile(r‘\d+‘)
print p.findall(‘one1two2three3four4‘)

### output ###
# [‘1‘, ‘2‘, ‘3‘, ‘4‘]

finditer(string[, pos[, endpos]]) | re.finditer(pattern, string[, flags]):
搜索string,返回一个顺序访问每一个匹配结果(Match对象)的迭代器。

import re

p = re.compile(r‘\d+‘)
for m in p.finditer(‘one1two2three3four4‘):
    print m.group(),

### output ###
# 1 2 3 4

sub(repl, string[, count]) | re.sub(pattern, repl, string[, count]):
使用repl替换string中每一个匹配的子串后返回替换后的字符串。

当repl是一个字符串时,可以使用\id或\g<id>、\g<name>引用分组,但不能使用编号0。

当repl是一个方法时,这个方法应当只接受一个参数(Match对象),并返回一个字符串用于替换(返回的字符串中不能再引用分组)。

count用于指定最多替换次数,不指定时全部替换。

import re

p = re.compile(r‘(\w+) (\w+)‘)
s = ‘i say, hello world!‘

print p.sub(r‘\2 \1‘, s)

def func(m):
    return m.group(1).title() + ‘ ‘ + m.group(2).title()

print p.sub(func, s)

### output ###
# say i, world hello!
# I Say, Hello World!

subn(repl, string[, count]) |re.sub(pattern, repl, string[, count]):
返回 (sub(repl, string[, count]), 替换次数)。

import re

p = re.compile(r‘(\w+) (\w+)‘)
s = ‘i say, hello world!‘

print p.subn(r‘\2 \1‘, s)

def func(m):
    return m.group(1).title() + ‘ ‘ + m.group(2).title()

print p.subn(func, s)

### output ###
# (‘say i, world hello!‘, 2)
# (‘I Say, Hello World!‘, 2)
时间: 2024-10-13 14:53:50

python3正则表达式指南的相关文章

详解 Python3 正则表达式系列索引

详解 Python3 正则表达式(一) 详解 Python3 正则表达式(二) 详解 Python3 正则表达式(三) 详解 Python3 正则表达式(四) 详解 Python3 正则表达式(五) 详解 Python3 正则表达式(六) 详解 Python3 正则表达式(七)

详解 Python3 正则表达式(二)

上一篇:详解 Python3 正则表达式(一) 本文翻译自:https://docs.python.org/3.4/howto/regex.html 博主对此做了一些批注和修改 ^_^ 使用正则表达式 现在我们开始来写一些简单的正则表达式吧.Python 通过 re 模块为正则表达式引擎提供一个接口,同时允许你将正则表达式编译成模式对象,并用它们来进行匹配. 批注:re 模块是使用 C 语言编写,所以效率比你用普通的字符串方法要高得多:将正则表达式进行编译(compile)也是为了进一步提高效率

Python正则表达式指南(转)

1. 正则表达式基础 1.1. 简单介绍 正则表达式并不是Python的一部分.正则表达式是用于处理字符串的强大工具,拥有自己独特的语法以及一个独立的处理引擎,效率上可能不如str自带的方法,但功能十分强大.得益于这一点,在提供了正则表达式的语言里,正则表达式的语法都是一样的,区别只在于不同的编程语言实现支持的语法数量不同:但不用担心,不被支持的语法通常是不常用的部分.如果已经在其他语言里使用过正则表达式,只需要简单看一看就可以上手了. 下图展示了使用正则表达式进行匹配的流程:  正则表达式的大

详解 Python3 正则表达式(一)

本文翻译自:https://docs.python.org/3.4/howto/regex.html 博主对此做了一些批注和修改 ^_^ 正则表达式介绍 正则表达式(Regular expressions 也称为 REs,或 regexes 或 regex patterns)本质是一个微小的且高度专业化的编程语言.它被嵌入到 Python 中,并通过 re 模块提供给程序员使用.使用正则表达式,你需要指定一些规则来描述那些你希望匹配的字符串集合.这些字符串集合可能包含英语句子.e-mail 地址

详解 Python3 正则表达式(三)

上一篇:详解 Python3 正则表达式(二) 本文翻译自:https://docs.python.org/3.4/howto/regex.html 博主对此做了一些批注和修改 ^_^ 模块级别的函数 使用正则表达式也并非一定要创建模式对象,然后调用它的匹配方法.因为,re 模块同时还提供了一些全局函数,例如 match(),search(),findall(),sub() 等等.这些函数的第一个参数是正则表达式字符串,其他参数跟模式对象同名方法采用一样的参数:返回值也一样,同样是返回 None

详解 Python3 正则表达式(四)

上一篇:详解 Python3 正则表达式(三) 本文翻译自:https://docs.python.org/3.4/howto/regex.html 博主对此做了一些批注和修改 ^_^ 更多强大的功能 到目前为止,我们只是介绍了正则表达式的一部分功能.在这一篇中,我们学会到一些新的元字符,然后再教大家如何使用组来获得被匹配的部分文本. 更多元字符 还有一些元字符我们没有讲到,接下来博主一一为大家讲解. 有些元字符它们不匹配任何字符,只是简单地表示成功或失败,因此这些字符也称之为零宽断言.例如 \

Python3快速入门(七)——Python3正则表达式

Python3快速入门(七)--Python3正则表达式 1.re模块简介 re 模块提供 Perl 风格的正则表达式模式,使 Python 语言拥有全部的正则表达式功能. 2.正则表达式模式 模式字符串使用特殊的语法来表示一个正则表达式:正则表达式模式中的字母和数字匹配同样的字符串:多数字母和数字前加一个反斜杠时会有不同的含义:标点符号通常有特殊的含义,只有被转义时才匹配自身:反斜杠本身需要使用反斜杠转义.^匹配字符串的开头$匹配字符串的末尾.匹配任意字符,除了换行符,当re.DOTALL标记

Python3正则表达式

Python3正则表达式之:(?(id/name)yes-pattern|no-pattern)条件性匹配 1. 用途 (?(id/name)yes-pattern|no-pattern)的作用是: 对于给出的id或者name,先尝试去匹配 yes-pattern部分的内容: 如果id或name条件不满足,则去匹配no-pattern部分的内容: 这句话听着还是很拗口的,或者说一下子还是很难懂的. 2. 参数含义 此处的name或id,是针对(当前位置的)条件性匹配之前的,某个已经通过group

Python3 正则表达式

正则表达式是一个特殊的字符序列,它能帮助你方便的检查一个字符串是否与某种模式匹配. Python 自1.5版本起增加了re 模块,它提供 Perl 风格的正则表达式模式. re 模块使 Python 语言拥有全部的正则表达式功能. compile 函数根据一个模式字符串和可选的标志参数生成一个正则表达式对象.该对象拥有一系列方法用于正则表达式匹配和替换. re 模块也提供了与这些方法功能完全一致的函数,这些函数使用一个模式字符串做为它们的第一个参数. 本章节主要介绍Python中常用的正则表达式