关于神经网络(matlab)归一化的整理

关于神经网络归一化方法的整理
由于采集的各数据单位不一致,因而须对数据进行[-1,1]归一化处理,归一化方法主要有如下几种,供大家参

考:(by james)
1、线性函数转换,表达式如下:
y=(x-MinValue)/(MaxValue-MinValue)
说明:x、y分别为转换前、后的值,MaxValue、MinValue分别为样本的最大值和最小值。
2、对数函数转换,表达式如下:
y=log10(x)
说明:以10为底的对数函数转换。
3、反余切函数转换,表达式如下:
y=atan(x)*2/PI
归一化是为了加快训练网络的收敛性,可以不进行归一化处理
归一化的具体作用是归纳统一样本的统计分布性。归一化在0-1之间是统计的概率分布,归一化在-1--+1之间是

统计的坐标分布。归一化有同一、统一和合一的意思。无论是为了建模还是为了计算,首先基本度量单位要同

一,神经网络是以样本在事件中的统计分别几率来进行训练(概率计算)和预测的,归一化是同一在0-1之间的

统计概率分布;
当所有样本的输入信号都为正值时,与第一隐含层神经元相连的权值只能同时增加或减小,从而导致学习速度

很慢。为了避免出现这种情况,加快网络学习速度,可以对输入信号进行归一化,使得所有样本的输入信号其

均值接近于0或与其均方差相比很小。
归一化是因为sigmoid函数的取值是0到1之间的,网络最后一个节点的输出也是如此,所以经常要对样本的输出

归一化处理。所以这样做分类的问题时用[0.9 0.1 0.1]就要比用[1 0 0]要好。
但是归一化处理并不总是合适的,根据输出值的分布情况,标准化等其它统计变换方法有时可能更好。
关于用premnmx语句进行归一化:
premnmx语句的语法格式是:[Pn,minp,maxp,Tn,mint,maxt]=premnmx(P,T)
其中P,T分别为原始输入和输出数据,minp和maxp分别为P中的最小值和最大值。mint和maxt分别为T的最小值

和最大值。
premnmx函数用于将网络的输入数据或输出数据进行归一化,归一化后的数据将分布在[-1,1]区间内。
我们在训练网络时如果所用的是经过归一化的样本数据,那么以后使用网络时所用的新数据也应该和样本数据

接受相同的预处理,这就要用到tramnmx。
下面介绍tramnmx函数:
[Pn]=tramnmx(P,minp,maxp)
其中P和Pn分别为变换前、后的输入数据,maxp和minp分别为premnmx函数找到的最大值和最小值。
(by terry2008)
matlab中的归一化处理有三种方法
1. premnmx、postmnmx、tramnmx
2. restd、poststd、trastd
3. 自己编程
具体用那种方法就和你的具体问题有关了
(by happy)
pm=max(abs(p(i,:))); p(i,:)=p(i,:)/pm;

for i=1:27
p(i,:)=(p(i,:)-min(p(i,:)))/(max(p(i,:))-min(p(i,:)));
end 可以归一到0 1 之间
0.1+(x-min)/(max-min)*(0.9-0.1)其中max和min分别表示样本最大值和最小值。
这个可以归一到0.1-0.9

关于神经网络(matlab)归一化的整理关于神经网络归一化方法的整理由于采集的各数据单位不一致,因而须对数据进行[-1,1]归一化处理,归一化方法主要有如下几种,供大家参考:(by james)1、线性函数转换,表达式如下:y=(x-MinValue)/(MaxValue-MinValue)说明:x、y分别为转换前、后的值,MaxValue、MinValue分别为样本的最大值和最小值。2、对数函数转换,表达式如下:y=log10(x)说明:以10为底的对数函数转换。3、反余切函数转换,表达式如下:y=atan(x)*2/PI归一化是为了加快训练网络的收敛性,可以不进行归一化处理 归一化的具体作用是归纳统一样本的统计分布性。归一化在0-1之间是统计的概率分布,归一化在-1--+1之间是统计的坐标分布。归一化有同一、统一和合一的意思。无论是为了建模还是为了计算,首先基本度量单位要同一,神经网络是以样本在事件中的统计分别几率来进行训练(概率计算)和预测的,归一化是同一在0-1之间的统计概率分布; 当所有样本的输入信号都为正值时,与第一隐含层神经元相连的权值只能同时增加或减小,从而导致学习速度很慢。为了避免出现这种情况,加快网络学习速度,可以对输入信号进行归一化,使得所有样本的输入信号其均值接近于0或与其均方差相比很小。归一化是因为sigmoid函数的取值是0到1之间的,网络最后一个节点的输出也是如此,所以经常要对样本的输出归一化处理。所以这样做分类的问题时用[0.9 0.1 0.1]就要比用[1 0 0]要好。但是归一化处理并不总是合适的,根据输出值的分布情况,标准化等其它统计变换方法有时可能更好。关于用premnmx语句进行归一化:premnmx语句的语法格式是:[Pn,minp,maxp,Tn,mint,maxt]=premnmx(P,T)其中P,T分别为原始输入和输出数据,minp和maxp分别为P中的最小值和最大值。mint和maxt分别为T的最小值和最大值。premnmx函数用于将网络的输入数据或输出数据进行归一化,归一化后的数据将分布在[-1,1]区间内。我们在训练网络时如果所用的是经过归一化的样本数据,那么以后使用网络时所用的新数据也应该和样本数据接受相同的预处理,这就要用到tramnmx。下面介绍tramnmx函数:[Pn]=tramnmx(P,minp,maxp)其中P和Pn分别为变换前、后的输入数据,maxp和minp分别为premnmx函数找到的最大值和最小值。(by terry2008)matlab中的归一化处理有三种方法1. premnmx、postmnmx、tramnmx2. restd、poststd、trastd3. 自己编程具体用那种方法就和你的具体问题有关了 (by happy)pm=max(abs(p(i,:))); p(i,:)=p(i,:)/pm;和for i=1:27p(i,:)=(p(i,:)-min(p(i,:)))/(max(p(i,:))-min(p(i,:)));end 可以归一到0 1 之间0.1+(x-min)/(max-min)*(0.9-0.1)其中max和min分别表示样本最大值和最小值。这个可以归一到0.1-0.9
时间: 2024-10-29 10:02:19

关于神经网络(matlab)归一化的整理的相关文章

再议Matlab归一化函数

在最新版的matlab里面共有两个归一化函数:mapminmax()和mapstd(). mapminmax()函数将数据归一化到[-1 1](默认也可自己调参数). mapstd()函数将数据归一化成零均值和单位方差. (1) a = -0.9200    0.7300   -0.4700    0.7400    0.2900 [y,ps] = mapminmax(a) y = -1.0000    0.9880   -0.4578    1.0000    0.4578 ps = name

神经网络和机器学习资料整理

公开课Andrew Ng 的机器学习公开课Geoffrey Hinton 的神经网络的公开课 学习和参考书 常用网址 Referencetornadomeet整理的学习资料和常用链接

自组织竞争神经网络 - matlab

网络的输出神经元之间相互竞争,同一时刻只有一个神经元获胜. 二.学习规则 竞争神经网络的学习规则是由内星规则发展而来的Kohonen学习规则. 4.SOM学习算法 设定变量:X=[x1,x2,x3,-,xm]为输入样本,每个样本为m维向量.ωi(k)=[ωi1(k), ω i2(k),-,ωin(k)]为第i个输入节点与输出神经元之间的权值向量 初始化:权值使用较小的随机值进行初始化,并对输入向量和权值做归一化处理 X' = x/||x|| ω'i(k)= ωi(k)/||ωi(k)|| ||x

[人工神经网络]Matlab中的激活函数及导函数形式

版本:MatlabR2015b 1.logsig(n)=1/(1+exp(-n)) 导函数:dlogsig(n)=-exp(-n)/(1+exp(-n))^2=logsig(n)(1-logsig(n)) 2.tansig(n)=2/(1+exp(-2*n)) -1; 3.purelin(n)=n 4.elliotsig(n) = n/(1+abs(n)) 5.elliot2sig(n)=n*n/(1+n*n) 原文地址:https://www.cnblogs.com/alimy/p/95836

MATLAB 图像归一化

matlab图像处理为什么要归一化和如何归一化一.为什么归一化1.   基本上归一化思想是利用图像的不变矩寻找一组参数使其能够消除其他变换函数对图像变换的影响.也就是转换成唯一的标准形式以抵抗仿射变换 图像归一化使得图像可以抵抗几何变换的攻击,它能够找出图像中的那些不变量,从而得知这些图像原本就是一样的或者一个系列的. 因为我们这次的图片有好多都是一个系列的,所以老师把这个也作为我研究的一个方向. 我们主要要通过归一化减小医学图片由于光线不均匀造成的干扰.2.matlab里图像数据有时候必须是浮

[转载]matlab图像处理为什么要归一化和如何归一化

matlab图像处理为什么要归一化和如何归一化,一.为什么归一化1.   基本上归一化思想是利用图像的不变矩寻找一组参数使其能够消除其他变换函数对图像变换的影响.也就是转换成唯一的标准形式以抵抗仿射变换 图像归一化使得图像可以抵抗几何变换的攻击,它能够找出图像中的那些不变量,从而得知这些图像原本就是一样的或者一个系列的. 因为我们这次的图片有好多都是一个系列的,所以老师把这个也作为我研究的一个方向. 我们主要要通过归一化减小医学图片由于光线不均匀造成的干扰.2.matlab里图像数据有时候必须是

浅谈卷积神经网络及matlab实现

前言,好久不见,大家有没有想我啊.哈哈.今天我们来随便说说卷积神经网络. 1卷积神经网络的优点 卷积神经网络进行图像分类是深度学习关于图像处理的一个应用,卷积神经网络的优点是能够直接与图像像素进行卷积,从图像像素中提取图像特征,这种处理方式更加接近人类大脑视觉系统的处理方式.另外,卷积神经网络的权值共享属性和pooling层使网络需要训练的参数大大减小,简化了网络模型,提高了训练的效率. 2 卷积神经网络的架构 卷积神经网络与原始神经网络有什么区别呢,现在我分别给他们的架构图. 图 1 普通深度

什么是神经网络

什么是神经网络? 神经网络是由很多神经元组成的,首先我们看一下,什么是神经元 上面这个图表示的就是一个神经元,我们不管其它书上说的那些什么树突,轴突的.我用个比较粗浅的解释,可能不太全面科学,但对初学者很容易理解: 1.我们把输入信号看成你在matlab中需要输入的数据,输进去神经网络后 2.这些数据的每一个都会被乘个数,即权值w,然后这些东东与阀值b相加后求和得到u, 3.上面只是线性变化,为了达到能处理非线性的目的,u做了个变换,变换的规则和传输函数有关 可能还有人问,那么那个阀值是什么呢?

卷积神经网络大总结

#Deep Learning回顾#之2006年的Science Paper 大家都清楚神经网络在上个世纪七八十年代是着实火过一回的,尤其是后向传播BP算法出来之后,但90年代后被SVM之类抢了风头,再后来大家更熟悉的是SVM.AdaBoost.随机森林.GBDT.LR.FTRL这些概念.究其原因,主要是神经网络很难解决训练的问题,比如梯度消失.当时的神经网络研究进入一个低潮期,不过Hinton老人家坚持下来了. 功夫不负有心人,2006年Hinton和学生发表了利用RBM编码的深层神经网络的Sc