这里是一个比较简单的问题:考虑每个数对和的贡献。先考虑数列两端的值,两端的摆放的值总计有2种,比如左端:0,大,小;0,小,大;有1/2的贡献度。右端同理。
中间的书总计有6种可能。小,中,大。其中有两种对答案有贡献,即1/3的贡献度。加和计算可得到答案。
Permutation Bo
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 693 Accepted Submission(s): 421
Special Judge
Problem Description
There are two sequences h1∼hn and c1∼cn. h1∼hn is a permutation of 1∼n. particularly, h0=hn+1=0.
We define the expression [condition] is 1 when condition is True,is 0 when condition is False.
Define the function f(h)=∑ni=1ci[hi>hi−1 and hi>hi+1]
Bo have gotten the value of c1∼cn, and he wants to know the expected value of f(h).
Input
This problem has multi test cases(no more than 12).
For each test case, the first line contains a non-negative integer n(1≤n≤1000), second line contains n non-negative integer ci(0≤ci≤1000).
Output
For each test cases print a decimal - the expectation of f(h).
If the absolute error between your answer and the standard answer is no more than 10−4, your solution will be accepted.
Sample Input
4
3 2 4 5
5
3 5 99 32 12
Sample Output
6.000000
52.833333
Author
绍兴一中
#include<iostream> #include<stdio.h> using namespace std; int a[10005]; int main() { int n; while(~scanf("%d",&n)) { for(int i=0; i<n; i++) { scanf("%d",a+i); } if(n==1) { printf("%.6lf\n",(a[0]+0.0)); continue; } if(n==2) { printf("%.6lf\n",(a[0]+0.0+a[1])/2); continue; } double ans=0.0; ans=(a[0]+0.0+a[n-1]+0.0); ans/=2; double tmp=0.0; for(int i=1; i<n-1; i++) { tmp+=(a[i]+0.0); } tmp/=3; ans+=tmp; printf("%.6lf\n",ans); } return 0; }