题目1107:搬水果(哈夫曼树)

题目1107:搬水果

时间限制:1 秒

内存限制:32 兆

特殊判题:

提交:6189

解决:2178

题目描述:

在一个果园里,小明已经将所有的水果打了下来,并按水果的不同种类分成了若干堆,小明决定把所有的水果合成一堆。每一次合并,小明可以把两堆水果合并到一起,消耗的体力等于两堆水果的重量之和。当然经过 n‐1 次合并之后,就变成一堆了。小明在合并水果时总共消耗的体力等于每次合并所耗体力之和。

假定每个水果重量都为 1,并且已知水果的种类数和每种水果的数目,你的任务是设计出合并的次序方案,使小明耗费的体力最少,并输出这个最小的体力耗费值。例如有 3 种水果,数目依次为 1,2,9。可以先将 1,2 堆合并,新堆数目为3,耗费体力为 3。然后将新堆与原先的第三堆合并得到新的堆,耗费体力为 12。所以小明总共耗费体力=3+12=15,可以证明 15 为最小的体力耗费值。

输入:

每组数据输入包括两行,第一行是一个整数 n(1<=n<=10000),表示水果的种类数,如果 n 等于 0 表示输入结束,且不用处理。第二行包含 n 个整数,用空格分隔,第 i 个整数(1<=ai<=1000)是第 i 种水果的数目。

输出:

对于每组输入,输出一个整数并换行,这个值也就是最小的体力耗费值。输入数据保证这个值小于 2^31。

样例输入:
3
9 1 2
0
样例输出:
15
#include <iostream>
#include<stdio.h>
#include<queue>
using namespace std;
priority_queue<int,vector<int>,greater<int> > Q;
int main()
{
    int n;
    while(scanf("%d",&n)!=EOF&&n!=0)
    {
        while(Q.empty()==false) Q.pop();
        for(int i=0; i<n; i++)
        {
            int x;
            scanf("%d",&x);
            Q.push(x);
        }
        int ans=0;
        while(Q.size()>1)
        {
            int a=Q.top();
            Q.pop();
            int b=Q.top();
            Q.pop();
            ans+=a+b;
            Q.push(a+b);
        }
        printf("%d\n",ans);
    }

    return 0;
}

时间: 2024-10-04 02:34:24

题目1107:搬水果(哈夫曼树)的相关文章

哈夫曼树——贪心

哈夫曼树——贪心 哈夫曼树:给定n个权值作为n的叶子结点,构造一棵二叉树,若带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman tree).哈夫曼树是带权路径长度                 最短的树,权值较大的结点离根较近. 此类题目一般求算哈夫曼树路径总值,利用贪心选择性质每次从队头取出两个边权和最小的树合并成新树入队(优先队列,保证队首元素最小),每次记录新树权值,当队内只剩一棵树时结束算法: priority_queue<long long,vector

九度 1107 - 霍夫曼树 - 搬水果

这道题目一开始我用排序来做,每次选择最小的两个,相当于构建了霍夫曼树,最后统计所有非叶子结点之和.但是因为每次排序的基数太大,所以会一直超时. 所以我们用优先队列模拟一个堆,利用最小堆的特征来快速得到最小的两个数.STL带有优先队列-priority_queue. priority_queue 对于基本类型的使用方法相对简单.他的模板声明带有三个参数: priority_queue<Type, Container, Functional> 其中Type 为数据类型, Container 为保存

九度oj 题目1172:哈夫曼树

题目描述: 哈夫曼树,第一行输入一个数n,表示叶结点的个数.需要用这些叶结点生成哈夫曼树,根据哈夫曼树的概念,这些结点有权值,即weight,题目需要输出所有结点的值与权值的乘积之和. 输入: 输入有多组数据. 每组第一行输入一个数n,接着输入n个叶节点(叶节点权值不超过100,2<=n<=1000). 输出: 输出权值. 样例输入: 5 1 2 2 5 9 样例输出: 37 一开始本来想用数组来构造哈夫曼树,代码如下: 1 #include <cstdio> 2 #include

题目1172:哈夫曼树(最短路径的和)

题目1172:哈夫曼树 时间限制:1 秒 内存限制:32 兆 特殊判题:否 题目描述: 哈夫曼树,第一行输入一个数n,表示叶结点的个数.需要用这些叶结点生成哈夫曼树,根据哈夫曼树的概念,这些结点有权值,即weight,题目需要输出所有结点的值与权值的乘积之和. 输入: 输入有多组数据.每组第一行输入一个数n,接着输入n个叶节点(叶节点权值不超过100,2<=n<=1000). 输出: 输出权值. 样例输入: 5 1 2 2 5 9 样例输出: 37 #include <iostream&

关于【哈夫曼树】

为了方便快捷高效率的求得集合中权值最小的2个元素,我采用堆数据结构,它可以以O(logn)的复杂度取得n个元素中的最小值.为了绕过对堆的实现,我采用标准模板库中的相应标准模板——优先队列. 利用语句: priority_queue<int> Q; 建立一个保存元素为int的堆Q,但是此时建立的堆默认是大顶堆,即每次取到的元素是整个堆中的最大元素,于是采用如下语句定义一个小顶堆: priority_queue<int,vector<int>,greater<int>

树-堆结构练习——合并果子之哈夫曼树

树-堆结构练习——合并果子之哈夫曼树 Time Limit: 1000MS Memory limit: 65536K 题目描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和.可以看出,所有的果子经过n-1次合并之后,就只剩下一堆了.多多在合并果子时总共消耗的体力等于每次合并所消耗体力之和. 因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节

SDUT 堆结构练习——合并果子之哈夫曼树(丧心病狂heap)

树-堆结构练习--合并果子之哈夫曼树 Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^ 题目描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和.可以看出,所有的果子经过n-1次合并之后,就只剩下一堆了.多多在合并果子时总共消耗的体力等于每次合并所消耗体力之和. 因为还要花大力气把这些果子搬回家,所以

哈夫曼树与哈夫曼编码

哈夫曼树与哈夫曼编码 术语: i)路径和路径长度 在一棵树中,从一个结点往下可以达到的孩子或孙子结点之间的通路,称为路径. 路径中分支的数目称为路径长度.若规定根结点的层数为1,则从根结点到第L层结点的路径长度为L-1. ii)结点的权及带权路径长度 若对树中的每个结点赋给一个有着某种含义的数值,则这个数值称为该结点的权. 结点的带权路径长度为:从根结点到该结点之间的路径长度与该结点的权的乘积. iii)树的带权路径长度 树的带权路径长度:所有叶子结点的带权路径长度之和,记为WPL. 先了解一下

hdu5884 Sort(二分+k叉哈夫曼树)

题目链接:hdu5884 Sort 题意:n个有序序列的归并排序.每次可以选择不超过k个序列进行合并,合并代价为这些序列的长度和.总的合并代价不能超过T, 问k最小是多少. 题解:先二分k,然后在k给定的情况下,构造k叉哈夫曼树.O(nlogn)的做法:先对所有数排序,另外一个队列维护合并后的值,取值时从两个序列前端取小的即可. 注:如果(n-1)%(k-1)!=0,那么就要增加(k-1-(n-1)%(k-1))个权值为0的叶子节点作虚拟点. 1 #include<cstdio> 2 #inc

哈夫曼树以及哈夫曼编码的问题

今天看到一个哈夫曼编码的题目,给定一个字符串abcdabaa,问哈夫曼编码后的二进制串的总长度是多少,答案是14 对于哈夫曼树我是一点都不了解啊,所以一顿查找,总结出以下知识点,与大家分享:当然部分内容参考了下百度 哈夫曼树又称为最优二叉树,是一种带权路径最短的二叉树.哈夫曼树是二叉树的一种应用,在信息检索中很常用. 一些相关的概念: 1.节点之间的路径长度:从一个节点到另一个节点之间的分支数量称为两个节点之间的路径长度. 2.树的路径长度:从根节点到树中每一个节点的路径长度之和. 3.节点的带