二叉树的前序、中序、后序遍历(递归、非递归)实现

本文部分来源于CSDN兰亭风雨大牛的原创。链接为http://blog.csdn.net/ns_code/article/details/12977901

二叉树是一种非常重要的数据结构,很多其他数据机构都是基于二叉树的基础演变过来的。二叉树有前、中、后三种遍历方式,因为树的本身就是用递归定义的,因此采用递归的方法实现三种遍历,不仅代码简洁且容易理解,但其开销也比较大,而若采用非递归方法实现三种遍历,则要用栈来模拟实现(递归也是用栈实现的)。下面先简要介绍三种遍历方式的递归实现,再详细介绍三种遍历方式的非递归实现

一、三种遍历方式的递归实现(比较简单,这里不详细讲解)

1、先序遍历——按照“根节点-左孩子-右孩子”的顺序进行访问

 1 /**
 2  * Definition for binary tree
 3  * struct TreeNode {
 4  *     int val;
 5  *     TreeNode *left;
 6  *     TreeNode *right;
 7  *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 8  * };
 9  */
10 class Solution {
11 public:
12     vector<int> preorderTraversal(TreeNode *root) {
13       vector<int> root_vec;
14       vector<int> left_vec;
15       vector<int> right_vec;
16       if(root==NULL) return root_vec;
17       root_vec.push_back(root->val);
18       if(root->left!=NULL) left_vec=preorderTraversal(root->left);
19       if(root->right!=NULL) right_vec=preorderTraversal(root->right);
20       root_vec.insert(root_vec.end(),left_vec.begin(),left_vec.end());
21       root_vec.insert(root_vec.end(),right_vec.begin(),right_vec.end());
22       return root_vec;
23     }
24 };

2、中序遍历——按照“左孩子-根节点-右孩子”的顺序进行访问。

3、后序遍历——按照“左孩子-右孩子-根节点”的顺序进行访问。

 1 /**
 2  * Definition for binary tree
 3  * struct TreeNode {
 4  *     int val;
 5  *     TreeNode *left;
 6  *     TreeNode *right;
 7  *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 8  * };
 9  */
10 class Solution {
11 public:
12     vector<int> postorderTraversal(TreeNode *root) {
13         vector<int> root_vec;
14         vector<int> left_vec;
15         vector<int> right_vec;
16         if(root==NULL) return root_vec;
17         if(root->left) left_vec=postorderTraversal(root->left);
18         if(root->right) right_vec=postorderTraversal(root->right);
19         root_vec.push_back(root->val);
20         left_vec.insert(left_vec.end(),right_vec.begin(),right_vec.end());
21         left_vec.insert(left_vec.end(),root_vec.begin(),root_vec.end());
22         return left_vec;
23     }
24 };

二、三种遍历方式的非递归实现

为了便于理解,这里以下图的二叉树为例,分析二叉树的三种遍历方式的实现过程。

1、前序遍历的非递归实现

根据先序遍历的顺序,先访问根节点,再访问左子树,后访问右子树,而对于每个子树来说,又按照同样的访问顺序进行遍历,上图的先序遍历顺序为:ABDECF。非递归的实现思路如下:

对于任一节点P,

1)输出节点P,然后将其入栈,再看P的左孩子是否为空;

2)若P的左孩子不为空,则置P的左孩子为当前节点,重复1)的操作;

3)若P的左孩子为空,则将栈顶节点出栈,但不输出,并将出栈节点的右孩子置为当前节点,看其是否为空;

4)若不为空,则循环至1)操作;

5)如果为空,则继续出栈,但不输出,同时将出栈节点的右孩子置为当前节点,看其是否为空,重复4)和5)操作;

6)直到当前节点P为NULL并且栈空,遍历结束。

   下面以上图为例详细分析其先序遍历的非递归实现过程:

首先,从根节点A开始,根据操作1),输出A,并将其入栈,由于A的左孩子不为空,根据操作2),将B置为当前节点,再根据操作1),将B输出,并将其入栈,由于B的左孩子也不为空,根据操作2),将D置为当前节点,再根据操作1),输出D,并将其入栈,此时输出序列为ABD;

由于D的左孩子为空,根据操作3),将栈顶节点D出栈,但不输出,并将其右孩子置为当前节点;

由于D的右孩子为空,根据操作5),继续将栈顶节点B出栈,但不输出,并将其右孩子置为当前节点;

由于B的右孩子E不为空,根据操作1),输出E,并将其入栈,此时输出序列为:ABDE;

由于E的左孩子为空,根据操作3),将栈顶节点E出栈,但不输出,并将其右孩子置为当前节点;

由于E的右孩子为空,根据操作5),继续将栈顶节点A出栈,但不输出,并将其右孩子置为当前节点;

由于A的右孩子C不为空,根据操作1),输出C,并将其入栈,此时输出序列为:ABDEC;

由于A的左孩子F不为空,根据操作2),则将F置为当前节点,再根据操作1),输出F,并将其入栈,此时输出序列为:ABDECF;

由于F的左孩子为空,根据操作3),将栈顶节点F出栈,但不输出,并将其右孩子置为当前节点;

由于F的右孩子为空,根据操作5),继续将栈顶元素C出栈,但不输出,并将其右孩子置为当前节点;

此时栈空,且C的右孩子为NULL,因此遍历结束。

根据以上思路,前序遍历的非递归实现代码如下:

 1 /**
 2  * Definition for binary tree
 3  * struct TreeNode {
 4  *     int val;
 5  *     TreeNode *left;
 6  *     TreeNode *right;
 7  *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 8  * };
 9  */
10 class Solution {
11 public:
12     vector<int> preorderTraversal(TreeNode *root) {
13        vector<int> preorder_vec;
14        TreeNode *p=root;
15        if(p==NULL) return preorder_vec;
16        stack<TreeNode *> treenode_stack;
17        while(p||!treenode_stack.empty())
18        {
19            preorder_vec.push_back(p->val);
20            treenode_stack.push(p);
21            p=p->left;
22            while(!p&&!treenode_stack.empty())
23            {
24                p=treenode_stack.top();
25                treenode_stack.pop();
26                p=p->right;
27            }
28        }
29     }
30 };

2、中序遍历的非递归实现

根据中序遍历的顺序,先访问左子树,再访问根节点,后访问右子树,而对于每个子树来说,又按照同样的访问顺序进行遍历,上图的中序遍历顺序为:DBEAFC。非递归的实现思路如下:

对于任一节点P,

1)若P的左孩子不为空,则将P入栈并将P的左孩子置为当前节点,然后再对当前节点进行相同的处理;

2)若P的左孩子为空,则输出P节点,而后将P的右孩子置为当前节点,看其是否为空;

3)若不为空,则重复1)和2)的操作;

4)若为空,则执行出栈操作,输出栈顶节点,并将出栈的节点的右孩子置为当前节点,看起是否为空,重复3)和4)的操作;

5)直到当前节点P为NULL并且栈为空,则遍历结束。

   下面以上图为例详细分析其中序遍历的非递归实现过程:

首先,从根节点A开始,A的左孩子不为空,根据操作1)将A入栈,接着将B置为当前节点,B的左孩子也不为空,根据操作1),将B也入栈,接着将D置为当前节点,由于D的左子树为空,根据操作2),输出D;

由于D的右孩子也为空,根据操作4),执行出栈操作,将栈顶结点B出栈,并将B置为当前节点,此时输出序列为DB;

由于B的右孩子不为空,根据操作3),将其右孩子E置为当前节点,由于E的左孩子为空,根据操作1),输出E,此时输出序列为DBE;

由于E的右孩子为空,根据操作4),执行出栈操作,将栈顶节点A出栈,并将节点A置为当前节点,此时输出序列为DBEA;

此时栈为空,但当前节点A的右孩子并不为NULL,继续执行,由于A的右孩子不为空,根据操作3),将其右孩子C置为当前节点,由于C的左孩子不为空,根据操作1),将C入栈,将其左孩子F置为当前节点,由于F的左孩子为空,根据操作2),输出F,此时输出序列为:DBEAF;

由于F的右孩子也为空,根据操作4),执行出栈操作,将栈顶元素C出栈,并将其置为当前节点,此时的输出序列为:DBEAFC;

由于C的右孩子为NULL,且此时栈空,根据操作5),遍历结束。

根据以上思路,中序遍历的非递归实现代码如下:

3、后序遍历的非递归实现

根据后序遍历的顺序,先访问左子树,再访问右子树,后访问根节点,而对于每个子树来说,又按照同样的访问顺序进行遍历,上图的后序遍历顺序为:DEBFCA。后序遍历的非递归的实现相对来说要难一些,要保证根节点在左子树和右子树被访问后才能访问,思路如下:

对于任一节点P,

1)先将节点P入栈;

2)若P不存在左孩子和右孩子,或者P存在左孩子或右孩子,但左右孩子已经被输出,则可以直接输出节点P,并将其出栈,将出栈节点P标记为上一个输出的节点,再将此时的栈顶结点设为当前节点;

3)若不满足2)中的条件,则将P的右孩子和左孩子依次入栈,当前节点重新置为栈顶结点,之后重复操作2);

4)直到栈空,遍历结束。

   下面以上图为例详细分析其后序遍历的非递归实现过程:

首先,设置两个指针:Cur指针指向当前访问的节点,它一直指向栈顶节点,每次出栈一个节点后,将其重新置为栈顶结点,Pre节点指向上一个访问的节点;

Cur首先指向根节点A,Pre先设为NULL,由于A存在左孩子和右孩子,根据操作3),先将右孩子C入栈,再将左孩子B入栈,Cur改为指向栈顶结点B;

由于B的也有左孩子和右孩子,根据操作3),将E、D依次入栈,Cur改为指向栈顶结点D;

由于D没有左孩子,也没有右孩子,根据操作2),直接输出D,并将其出栈,将Pre指向D,Cur指向栈顶结点E,此时输出序列为:D;

由于E也没有左右孩子,根据操作2),输出E,并将其出栈,将Pre指向E,Cur指向栈顶结点B,此时输出序列为:DE;

由于B的左右孩子已经被输出,即满足条件Pre==Cur->lchild或Pre==Cur->rchild,根据操作2),输出B,并将其出栈,将Pre指向B,Cur指向栈顶结点C,此时输出序列为:DEB;

由于C有左孩子,根据操作3),将其入栈,Cur指向栈顶节点F;

由于F没有左右孩子,根据操作2),输出F,并将其出栈,将Pre指向F,Cur指向栈顶结点C,此时输出序列为:DEBF;

由于C的左孩子已经被输出,即满足Pre==Cur->lchild,根据操作2),输出C,并将其出栈,将Pre指向C,Cur指向栈顶结点A,此时输出序列为:DEBFC;

由于A的左右孩子已经被输出,根据操作2),输出A,并将其出栈,此时输出序列为:DEBFCA;

此时栈空,遍历结束。


   根据以上思路,后序遍历的非递归实现代码如下:

 1 /**
 2  * Definition for binary tree
 3  * struct TreeNode {
 4  *     int val;
 5  *     TreeNode *left;
 6  *     TreeNode *right;
 7  *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 8  * };
 9  */
10 class Solution {
11 public:
12     vector<int> postorderTraversal(TreeNode *root) {
13         vector<int> postorder_vec;
14         TreeNode *cur=root;
15         TreeNode *pre=NULL;
16         if(cur==NULL) return postorder_vec;
17         stack<TreeNode *> postorder_stack;
18         postorder_stack.push(cur);
19         while(!postorder_stack.empty())
20         {
21             cur=postorder_stack.top();
22             if((cur->left==NULL&&cur->right==NULL)||((pre!=NULL)&&(cur->left==pre||cur->right==pre)))
23             {
24                 postorder_stack.pop();
25                 postorder_vec.push_back(cur->val);
26                 pre=cur;
27             }
28             else
29             {
30                 if(cur->right!=NULL) postorder_stack.push(cur->right);
31                 if(cur->left!=NULL) postorder_stack.push(cur->left);
32             }
33         }
34     }
35 };

本博文写的非常粗糙,不断修改完善中。。。

二叉树的前序、中序、后序遍历(递归、非递归)实现,布布扣,bubuko.com

时间: 2024-10-13 01:02:31

二叉树的前序、中序、后序遍历(递归、非递归)实现的相关文章

二叉树 前序、中序、后序、层次遍历及非递归实现 查找、统计个数、比较、求深度的递归实现

一.基本概念 每个结点最多有两棵子树,左子树和右子树,次序不可以颠倒. 性质: 1.非空二叉树的第n层上至多有2^(n-1)个元素. 2.深度为h的二叉树至多有2^h-1个结点. 满二叉树:所有终端都在同一层次,且非终端结点的度数为2. 在满二叉树中若其深度为h,则其所包含的结点数必为2^h-1. 完全二叉树:除了最大的层次即成为一颗满二叉树且层次最大那层所有的结点均向左靠齐,即集中在左面的位置上,不能有空位置. 对于完全二叉树,设一个结点为i则其父节点为i/2,2i为左子节点,2i+1为右子节

分别求二叉树前、中、后序的第k个节点

一.求二叉树的前序遍历中的第k个节点 //求先序遍历中的第k个节点的值 int n=1; elemType preNode(BTNode *root,int k){ if(root==NULL) return ' '; if(n==k) return root->data; n++; elemType ch = preNode(root->lchild,k); if(ch!=' ') return ch; ch = preNode(root->rchild,k); return ch;

数据结构:二叉树(前,中,后,层次)非递归遍历。

#include <iostream> #include <stack> #include <map> #include <queue> #include <string.h> using namespace std; struct Node { char data; Node *left; Node *right; Node(char d = char()):data(d),left(NULL),right(NULL){} }; class T

算法实验-二叉树的创建和前序-中序-后序-层次 遍历

对于二叉树的创建我是利用先序遍历的序列进行创建 能够对于树节点的内容我定义为char型变量 '0'为空,即此处的节点不存在 头文件 Tree.h //链式二叉树的头文件 #pragma once #include<iostream> #include<queue> using namespace std; class BinaryTreeNode { public: char data; BinaryTreeNode *leftChild,*rightChild; BinaryTr

二叉树的前序中序后序遍历相互求法

二叉树的前中后序遍历,他们的递归非递归.还有广度遍历,参见二叉树的前中后序遍历迭代&广度遍历和二叉树的前中后序遍历简单的递归 现在记录已知二叉树的前序中序后序遍历的两个,求另外一个.一般,这两个中一定有中序遍历. 1.已知前序和中序,求后序遍历: 前序:ABDECFG  中序:DBEAFCG 思路简单:前序的第一个节点就是根节点, 中序中找到根节点的位置,根节点之前是其左子树,之后是右子树   按此顺序,依次在左子树部分遍历,右子树部分遍历 C++ 代码: TreeNode *BinaryTre

面试之路(11)-java递归和非递归二叉树前序中序后序遍历

二叉树的遍历 对于二叉树来讲最主要.最基本的运算是遍历. 遍历二叉树 是指以一定的次序访问二叉树中的每个结点.所谓 访问结点 是指对结点进行各种操作的简称.例如,查询结点数据域的内容,或输出它的值,或找出结点位置,或是执行对结点的其他操作.遍历二叉树的过程实质是把二叉树的结点进行线性排列的过程.假设遍历二叉树时访问结点的操作就是输出结点数据域的值,那么遍历的结果得到一个线性序列. 从二叉树的递归定义可知,一棵非空的二叉树由根结点及左.右子树这三个基本部分组成.因此,在任一给定结点上,可以按某种次

二叉树基本操作续二:前序、中序、后序遍历(非递归 迭代方式)

这里给出二叉树三种遍历方式的迭代实现代码.二叉树的递归实现使用系统栈入栈出栈,而非递归的迭代实现方法就是手动维护一个栈,来模拟递归的入栈出栈过程. 本文没有给出用户栈的代码,如果需要结合上篇的测试代码一起测试,则需要自己实现自己的栈,以及基本的pop.push等栈操作函数. 前序迭代遍历: 1 void iter_preorder(tree_pointer ptr) 2 { 3 //前序遍历:先遍历根节点,然后再分别遍历左右子树 4 int top = -1; 5 tree_pointer st

二叉树前序、中序和后序遍历的非递归实现

1 二叉树的前序遍历 对于每棵子树,先处理根,然后处理左子树,最后处理右子树.根最先访问,所以是前序遍历. 2 二叉树的中序遍历 对于每棵子树,先处理左子树,然后处理根,最后处理右子树.根中间访问,所以是中序遍历. 3 二叉树的后序遍历 对于每棵子树,先处理左子树,然后处理右子树,最后处理根.根最后访问,所以是后序遍历. 4 二叉树后序遍历的非递归实现 如果pre为NULL: 左右儿子都是NULL,那么自己出栈: 如果左儿子为NULL,右儿子不为NULL,右儿子进栈: 如果左儿子不为NULL,那

二叉树——前序遍历、中序遍历、后序遍历、层序遍历详解(递归非递归)

前言 前面介绍了二叉排序树的构造和基本方法的实现.但是排序遍历也是比较重要的一环.所以笔者将前中后序.和层序遍历梳理一遍. 了解树的遍历,需要具有的只是储备有队列,递归,和栈.这里笔者都有进行过详细介绍,可以关注笔者数据结构与算法专栏.持续分享,共同学习. 层序遍历 层序遍历.听名字也知道是按层遍历.我们知道一个节点有左右节点.而每一层一层的遍历都和左右节点有着很大的关系.也就是我们选用的数据结构不能一股脑的往一个方向钻,而左右应该均衡考虑.这样我们就选用队列来实现. 对于队列,现进先出.从根节

已知二叉树前、中序遍历,求后序 / 已知二叉树中、后序遍历,求前序

void solve(int start,int end,int root) { // 前序和中序 -> 后序 // 每次调用solve()函数,传入pre-order的start,end,root if (start > end) // 递归边界 return; int i = start; while (i < end && in.at(i) != pre.at(root)) // 找到左右子树的分割点 i++; solve(start, i - 1, root +