数学建模遗传算法

遗传算法实例

% 下面举例说明遗传算法 %% 求下列函数的最大值 %% f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] %% 将 x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为 (10-0)/(2^10-1)≈0.01 。 %% 将变量域 [0,10] 离散化为二值域 [0,1023], x=0+10*b/1023, 其中 b 是 [0,1023] 中的一个二值数。 %% %%--------------------------------------------------------------------------------------------------------------%%--------------------------------------------------------------------------------------------------------------%

% 编程%-----------------------------------------------% 2.1初始化(编码)% initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度),% 长度大小取决于变量的二进制编码的长度(在本例中取10位)。%遗传算法子程序%Name: initpop.m%初始化function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength)); % rand随机产生每个单元为 {0,1} 行数为popsize,列数为chromlength的矩阵,% roud对矩阵的每个单元进行圆整。这样产生的初始种群。

% 2.2 计算目标函数值% 2.2.1 将二进制数转化为十进制数(1)%遗传算法子程序%Name: decodebinary.m%产生 [2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制function pop2=decodebinary(pop)[px,py]=size(pop); %求pop行和列数for i=1:pypop1(:,i)=2.^(py-i).*pop(:,i);endpop2=sum(pop1,2); %求pop1的每行之和

% 2.2.2 将二进制编码转化为十进制数(2)% decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置% (对于多个变量而言,如有两个变量,采用20为表示,每个变量10为,则第一个变量从1开始,另一个变量从11开始。本例为1),% 参数1ength表示所截取的长度(本例为10)。%遗传算法子程序%Name: decodechrom.m%将二进制编码转换成十进制function pop2=decodechrom(pop,spoint,length)pop1=pop(:,spoint:spoint+length-1);pop2=decodebinary(pop1);

% 2.2.3 计算目标函数值% calobjvalue.m函数的功能是实现目标函数的计算,其公式采用本文示例仿真,可根据不同优化问题予以修改。%遗传算法子程序%Name: calobjvalue.m%实现目标函数的计算function [objvalue]=calobjvalue(pop)temp1=decodechrom(pop,1,10); %将pop每行转化成十进制数x=temp1*10/1023; %将二值域 中的数转化为变量域 的数objvalue=10*sin(5*x)+7*cos(4*x); %计算目标函数值

% 2.3 计算个体的适应值%遗传算法子程序%Name:calfitvalue.m%计算个体的适应值function fitvalue=calfitvalue(objvalue)global Cmin;Cmin=0;[px,py]=size(objvalue);for i=1:pxif objvalue(i)+Cmin>0temp=Cmin+objvalue(i);elsetemp=0.0;endfitvalue(i)=temp;endfitvalue=fitvalue‘;

% 2.4 选择复制% 选择或复制操作是决定哪些个体可以进入下一代。程序中采用赌轮盘选择法选择,这种方法较易实现。% 根据方程 pi=fi/∑fi=fi/fsum ,选择步骤:% 1) 在第 t 代,由(1)式计算 fsum 和 pi % 2) 产生 {0,1} 的随机数 rand( .),求 s=rand( .)*fsum% 3) 求 ∑fi≥s 中最小的 k ,则第 k 个个体被选中% 4) 进行 N 次2)、3)操作,得到 N 个个体,成为第 t=t+1 代种群%遗传算法子程序%Name: selection.m%选择复制function [newpop]=selection(pop,fitvalue)totalfit=sum(fitvalue); %求适应值之和fitvalue=fitvalue/totalfit; %单个个体被选择的概率fitvalue=cumsum(fitvalue); %如 fitvalue=[1 2 3 4],则 cumsum(fitvalue)=[1 3 6 10] [px,py]=size(pop);ms=sort(rand(px,1)); %从小到大排列fitin=1;newin=1;while newin<=pxif(ms(newin))<fitvalue(fitin)newpop(newin)=pop(fitin);newin=newin+1;elsefitin=fitin+1;endend

% 2.5 交叉% 交叉(crossover),群体中的每个个体之间都以一定的概率 pc 交叉,即两个个体从各自字符串的某一位置% (一般是随机确定)开始互相交换,这类似生物进化过程中的基因分裂与重组。例如,假设2个父代个体x1,x2为:% x1=0100110% x2=1010001% 从每个个体的第3位开始交叉,交又后得到2个新的子代个体y1,y2分别为:% y1=0100001% y2=1010110% 这样2个子代个体就分别具有了2个父代个体的某些特征。利用交又我们有可能由父代个体在子代组合成具有更高适合度的个体。% 事实上交又是遗传算法区别于其它传统优化方法的主要特点之一。%遗传算法子程序%Name: crossover.m%交叉function [newpop]=crossover(pop,pc)[px,py]=size(pop);newpop=ones(size(pop));for i=1:2:px-1if(rand<pc)cpoint=round(rand*py);newpop(i,:)=[pop(i,1:cpoint),pop(i+1,cpoint+1:py)];newpop(i+1,:)=[pop(i+1,1:cpoint),pop(i,cpoint+1:py)];elsenewpop(i,:)=pop(i);newpop(i+1,:)=pop(i+1);endend

% 2.6 变异% 变异(mutation),基因的突变普遍存在于生物的进化过程中。变异是指父代中的每个个体的每一位都以概率 pm 翻转,即由“1”变为“0”,% 或由“0”变为“1”。遗传算法的变异特性可以使求解过程随机地搜索到解可能存在的整个空间,因此可以在一定程度上求得全局最优解。%遗传算法子程序%Name: mutation.m%变异function [newpop]=mutation(pop,pm)[px,py]=size(pop);newpop=ones(size(pop));for i=1:pxif(rand<pm)mpoint=round(rand*py);if mpoint<=0mpoint=1;endnewpop(i)=pop(i);if any(newpop(i,mpoint))==0newpop(i,mpoint)=1;elsenewpop(i,mpoint)=0;endelsenewpop(i)=pop(i);endend

% 2.7 求出群体中最大得适应值及其个体%遗传算法子程序%Name: best.m%求出群体中适应值最大的值function [bestindividual,bestfit]=best(pop,fitvalue)[px,py]=size(pop);bestindividual=pop(1,:);bestfit=fitvalue(1);for i=2:pxif fitvalue(i)>bestfitbestindividual=pop(i,:);bestfit=fitvalue(i);endend

% 2.8 主程序%遗传算法主程序%Name:genmain05.mclearclfpopsize=20; %群体大小chromlength=10; %字符串长度(个体长度)pc=0.6; %交叉概率pm=0.001; %变异概率

pop=initpop(popsize,chromlength); %随机产生初始群体for i=1:20 %20为迭代次数[objvalue]=calobjvalue(pop); %计算目标函数fitvalue=calfitvalue(objvalue); %计算群体中每个个体的适应度[newpop]=selection(pop,fitvalue); %复制[newpop]=crossover(pop,pc); %交叉[newpop]=mutation(pop,pc); %变异[bestindividual,bestfit]=best(pop,fitvalue); %求出群体中适应值最大的个体及其适应值y(i)=max(bestfit);n(i)=i;pop5=bestindividual;x(i)=decodechrom(pop5,1,chromlength)*10/1023;pop=newpop;end

fplot(‘10*sin(5*x)+7*cos(4*x)‘,[0 10])hold onplot(x,y,‘r*‘)hold off

[z index]=max(y); %计算最大值及其位置x5=x(index)%计算最大值对应的x值y=z

【问题】求f(x)=x 10*sin(5x) 7*cos(4x)的最大值,其中0<=x<=9 【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08 【程序清单】    %编写目标函数      function[sol,eval]=fitness(sol,options)        x=sol(1);        eval=x 10*sin(5*x) 7*cos(4*x);    %把上述函数存储为fitness.m文件并放在工作目录下     initPop=initializega(10,[0 9],‘fitness‘);%生成初始种群,大小为10    [x endPop,bPop,trace]=ga([0 9],‘fitness‘,[],initPop,[1e-6 1 1],‘maxGenTerm‘,25,‘normGeomSelect‘,...      [0.08],[‘arithXover‘],[2],‘nonUnifMutation‘,[2 25 3]) %25次遗传迭代 运算借过为:x =    7.8562 24.8553(当x为7.8562时,f(x)取最大值24.8553) 注:遗传算法一般用来取得近似最优解,而不是最优解。 遗传算法实例2 【问题】在-5<=Xi<=5,i=1,2区间内,求解        f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2 x2.^2)))-exp(0.5*(cos(2*pi*x1) cos(2*pi*x2))) 22.71282的最小值。 【分析】种群大小10,最大代数1000,变异率0.1,交叉率0.3 【程序清单】    %源函数的matlab代码       function [eval]=f(sol)         numv=size(sol,2);         x=sol(1:numv);         eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv) 22.71282;   %适应度函数的matlab代码       function [sol,eval]=fitness(sol,options)         numv=size(sol,2)-1;         x=sol(1:numv);         eval=f(x);         eval=-eval;   %遗传算法的matlab代码       bounds=ones(2,1)*[-5 5];       [p,endPop,bestSols,trace]=ga(bounds,‘fitness‘) 注:前两个文件存储为m文件并放在工作目录下,运行结果为    p =    0.0000 -0.0000 0.0055 大家可以直接绘出f(x)的图形来大概看看f(x)的最值是多少,也可是使用优化函数来验证。matlab命令行执行命令:  fplot(‘x 10*sin(5*x) 7*cos(4*x)‘,[0,9]) evalops是传递给适应度函数的参数,opts是二进制编码的精度,termops是选择maxGenTerm结束函数时传递个maxGenTerm的参数,即遗传代数。xoverops是传递给交叉函数的参数。mutops是传递给变异函数的参数。

【问题】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9 【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08 【程序清单】    %编写目标函数      function[sol,eval]=fitness(sol,options)        x=sol(1);        eval=x+10*sin(5*x)+7*cos(4*x);    %把上述函数存储为fitness.m文件并放在工作目录下     initPop=initializega(10,[0 9],‘fitness‘);%生成初始种群,大小为10    [x endPop,bPop,trace]=ga([0 9],‘fitness‘,[],initPop,[1e-6 1 1],‘maxGenTerm‘,25,‘normGeomSelect‘,...      [0.08],[‘arithXover‘],[2],‘nonUnifMutation‘,[2 25 3]) %25次遗传迭代 运算借过为:x =    7.8562 24.8553(当x为7.8562时,f(x)取最大值24.8553) 注:遗传算法一般用来取得近似最优解,而不是最优解。 遗传算法实例2 【问题】在-5<=Xi<=5,i=1,2区间内,求解        f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2+x2.^2)))-exp(0.5*(cos(2*pi*x1)+cos(2*pi*x2)))+22.71282的最小值。 【分析】种群大小10,最大代数1000,变异率0.1,交叉率0.3 【程序清单】    %源函数的matlab代码       function [eval]=f(sol)         numv=size(sol,2);         x=sol(1:numv);         eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv)+22.71282;   %适应度函数的matlab代码       function [sol,eval]=fitness(sol,options)         numv=size(sol,2)-1;         x=sol(1:numv);         eval=f(x);         eval=-eval;   %遗传算法的matlab代码       bounds=ones(2,1)*[-5 5];       [p,endPop,bestSols,trace]=ga(bounds,‘fitness‘) 注:前两个文件存储为m文件并放在工作目录下,运行结果为    p =    0.0000 -0.0000 0.0055 大家可以直接绘出f(x)的图形来大概看看f(x)的最值是多少,也可是使用优化函数来验证。matlab命令行执行命令:  fplot(‘x+10*sin(5*x)+7*cos(4*x)‘,[0,9]) evalops是传递给适应度函数的参数,opts是二进制编码的精度,termops是选择maxGenTerm结束函数时传递个maxGenTerm的参数,即遗传代数。xoverops是传递给交叉函数的参数。mutops是传递给变异函数的参数。
时间: 2024-10-13 22:18:01

数学建模遗传算法的相关文章

数学建模系列:遗传算法

简介 遗传算法(Genetic Algorithms,GA)是一种基于自然选择原理和自然遗传机制的搜索(寻优)算法,它是模拟自然界中的生命进化进制,在人工系统中实现特定目标而优化.遗传算法的实质是通过群体搜索技术,更具适者生存的原则逐代进化,最终得到最优解或准最优解.它必须做以下操作:初始群体的产生.求每一个体的适应度.根据适者生存的原则选择优良个体.被选出的优良个体两两配对,通过随机交叉其染色体的基因并随机变异某些染色体的基因生成下一代群体,按此方法使群体逐代进化,直到满足进化终止条件. 生物

数学建模需掌握的知识总纲

数学建模需要掌握许多知识,这里我列出总纲: 学建模中的算法 穷举法 神经网络 模拟退火 遗传算法 图论算法 蒙特卡洛算法 所需基础知识 高等数学 线性代数(矩阵加减乘除) 概率论与数理统计(概率论,参数估计,假设检验,回归分析) 评价 AHP模型(层次分析) 模糊评价 预测 分析场景 曲线拟合 模糊预测 神经网络 灰色理论 马尔科夫链 运筹 整数规划(分支界定法) 01规划 灵敏度分析 影子价格 概率统计 排队论 主成分分析法 回归分析法 曲线拟合 图论 动态规划 网络最大流 最小费用流 最短路

在数学建模中学MATLAB

为期三周的数学建模国赛培训昨天正式结束了,还是有一定的收获的,尤其是在MATLAB的使用上. 1. 一些MATLAB的基础性东西: 元胞数组的使用:http://blog.csdn.net/z1137730824/article/details/39206823 对于任意文件夹的同一格式的图片的批量读取:http://blog.csdn.net/haizimin/article/details/39646595 关于MATLAB在微分/偏微分方程以及其他高等数学问题中的应用. 关于MATLAB在

数学建模常用的十大算法

数学建模常用的十大算法==转 (2017-07-16 11:26:14) 转载▼ 1. 蒙特卡罗算法.该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法. 2. 数据拟合.参数估计.插值等数据处理算法.比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MATLAB 作为工具. 3. 线性规划.整数规划.多元规划.二次规划等规划类算法.建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算

2015 数学建模竞赛 入门与提高 读书笔记

<数学建模竞赛入门与提高> 第1章:数学建模概述 近半个多世纪以来,数学已经走进了各大领域,而与其他学科相结合形成交叉学科,首要的关键一步就是建立研究对象的数学模型,并加以计算求解,数学建模和计算机技术在知识经济时代的作用可谓是如虎添翼. 1.1  初入门径--认识数学模型与数学建模 数学建模就是用数学语言描述实际现象的过程,这里的实际现象包含具体的自然现象,也包含抽象的比如顾客对某种商品所取的价值倾向.这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释评价实际现象等内容. 数

数学建模学习笔记(建模中的十大常用算法总结)

数学建模中的十大常用算法 1.    蒙特卡洛方法: 又称计算机随机性模拟方法,也称统计实验方法.可以通过模拟来检验自己模型的正确性. 2.    数据拟合.参数估计.插值等数据处理 比赛中常遇到大量的数据需要处理,而处理的数据的关键就在于这些方法,通常使用matlab辅助,与图形结合时还可处理很多有关拟合的问题. 3.    规划类问题算法: 包括线性规划.整数规划.多元规划.二次规划等:竞赛中又很多问题都和规划有关,可以说不少的模型都可以归结为一组不等式作为约束条件,几个函数表达式作为目标函

数学建模算法概括

目录 数学模型按数学方法分类 数学建模十大算法 建模思想 预测与预报 评价与决策 分类与判别 关联与因果 优化与控制 数学模型按数学方法分类 几何模型(球面积分,曲面积分) 分形理论(常用) 图论模型(优化类,规划类,决策类问题) 有一类线性规划类问题可用图论模型解决,最短路径 → 时间最短 or 路径最短 微分方程模型(预测人口增长,传热导热问题) 概率问题(彩票) 最优控制模型(药物疗效) 规划论模型(投资问题) 马氏链模型(概率模型) 前后不关联的概率模型 数学建模十大算法 蒙特卡罗算法

数学建模竞赛(国赛和美赛)经验分享

建模的经历 第一次参赛是在大一的暑假参加的国赛,当时和两个同学刚刚组队,我们也没有什么基础,结果可想而知:无奖.在经历了这一次国赛之后,大一时的两位队友也无心再参加,所以又重新找了两位队友.从此我们队伍成员便确认了下来.这两位分别是一名女生负责排版,一名男生负责建模:而我负责写程序.我们一起准备第二年的国赛,在这期间,我们学校决定自己组织一次建模比赛为国赛做铺垫.我们为了检验自己的学习成果,便参加了.凭借着很好的运气,我们拿了二等奖的好成绩.时间不久,便到了国赛.在国赛期间,我们每天熬夜熬到很晚

如何入门参加数学建模竞赛

1 网上资源 1.1 数学中国 可以去数学中国网站看看,在数学建模比赛的培训这一块做得很好的机构,如果自己有点银子,可以去参加他们的网上课程.另外他们有专门的数学建模群,群里面有很好关于数学建模的资料.而且这个机构自己也举办数学建模比赛,如果有时候可以在这里组队,直接参加比赛,累积一些经验,增长见识. 1.2 数学建模视频课程,现在网络上有一些比较好的关于数学建模比赛的视频资源,可以谷歌一下 1.3 网络上的一些关于数学建模的电子书,有时候你也不知道哪本书比较适合你,所以你可以先在网上找一些电子