POJ 3398 / UVA 1218 Perfect Service 树形DP

树形DP


Perfect Service

Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 1378   Accepted: 668

Description

A network is composed of N computers connected by N ? 1 communication links such that any two computers can be communicated via a unique route. Two computers are said to be adjacent if there is a communication link between them.
The neighbors of a computer is the set of computers which are adjacent to it. In order to quickly access and retrieve large amounts of information, we need to select some computers acting as servers to provide resources to their neighbors.
Note that a server can serve all its neighbors. A set of servers in the network forms a perfect service if every client (non-server) is served by exactly one server. The problem is to find a minimum number of servers which forms a
perfect service, and we call this number perfect service number.

We assume that N (≤ 10000) is a positive integer and these N computers are numbered from 1 to N. For example, Figure 1 illustrates a network comprised of six computers, where black nodes represent servers and white nodes represent
clients. In Figure 1(a), servers 3 and 5 do not form a perfect service because client 4 is adjacent to both servers 3 and 5 and thus it is served by two servers which contradicts the assumption. Conversely, servers 3 and 4 form a perfect service as shown in
Figure 1(b). This set also has the minimum cardinality. Therefore, the perfect service number of this example equals two.

Your task is to write a program to compute the perfect service number.

Input

The input consists of a number of test cases. The format of each test case is as follows: The first line contains one positive integer, N, which represents the number of computers in the network. The next N ? 1 lines contain all of the
communication links and one line for each link. Each line is represented by two positive integers separated by a single space. Finally, a 0 at the (N + 1)th line indicates the end of the first test case.

The next test case starts after the previous ending symbol 0. A ?1 indicates the end of the whole inputs.

Output

The output contains one line for each test case. Each line contains a positive integer, which is

the perfect service number.

Sample Input

6
1 3
2 3
3 4
4 5
4 6
0
2
1 2
-1

Sample Output

2
1

Source

Kaohsiung 2006

[Submit]   [Go Back]   [Status]  
[Discuss]

/* ***********************************************
Author        :CKboss
Created Time  :2015年02月22日 星期日 12时09分02秒
File Name     :POJ3398_2.cpp
************************************************ */

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <string>
#include <cmath>
#include <cstdlib>
#include <vector>
#include <queue>
#include <set>
#include <map>

using namespace std;

const int maxn=11000;
const int INF=1e6;

struct Edge
{
	int to,next;
}edge[maxn*2];

int Adj[maxn],Size;

int dp[maxn][3],n;

void init()
{
	Size=0;
	for(int i=0;i<=n+10;i++)
	{
		Adj[i]=-1;
		dp[i][0]=1; dp[i][1]=0; dp[i][2]=INF;
	}
}

void add_edge(int u,int v)
{
	edge[Size].to=v;
	edge[Size].next=Adj[u];
	Adj[u]=Size++;
}

void dfs(int u,int fa)
{
	for(int i=Adj[u];~i;i=edge[i].next)
	{
		int v=edge[i].to;
		if(v==fa) continue;
		dfs(v,u);
		dp[u][0]+=min(dp[v][0],dp[v][1]);
		dp[u][1]+=dp[v][2];
		dp[u][2]=min(dp[u][2],dp[v][0]-dp[v][2]);
	}
	dp[u][2]+=dp[u][1];
}

int main()
{
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);

	while(scanf("%d",&n)!=EOF)
	{
		if(n==-1) break;
		else if(n==0) continue;
		init();
		for(int i=0;i<n-1;i++)
		{
			int a,b;
			scanf("%d%d",&a,&b);
			add_edge(a,b); add_edge(b,a);
		}
		dfs(1,0);
		printf("%d\n",min(dp[1][0],dp[1][2]));
	}

    return 0;
}
时间: 2024-12-05 00:14:52

POJ 3398 / UVA 1218 Perfect Service 树形DP的相关文章

UVA - 1218 Perfect Service(树形dp)

题目链接:id=36043">UVA - 1218 Perfect Service 题意 有n台电脑.互相以无根树的方式连接,现要将当中一部分电脑作为server,且要求每台电脑必须连接且仅仅能连接一台server(不包含作为server的电脑).求最少须要多少台电脑作为server. 思路 典型的树形dp问题,那么我们来建立模型. d(u,0):u是server,孩子是不是server均可 d(u,1):u不是server,u的父亲是server,u的孩子不能是server d(u,2)

POJ 3398 Perfect Service(树形DP,最小支配集)

#include <iostream> #include <cstdlib> #include <cstdio> #include <cstring> #include <string> #include <algorithm> #include <queue> #include <set> #include <stack> #include <map> #define LL long

uva 12186 Another Crisis 树形dp

// uva 12186 Another Crisis 树形dp // // 对于一个节点u,有k个子节点,则至少有c = (k * T - 1) / 100 + 1才能 // 发信,即c / k >= T / 100,则 c 的值为 k * T /100,上取整变成上式 // 将所有的子节点d从小到大排序,取前c个就是d[u]的值 // 紫书上的一题,之前看了好久好久,觉得挺好的,然而一直没做,今天就来 // 体验体验,挺好的一题,注意一下,如果一个节点是叶节点,直接return 1就好 //

poj 1655 and 3107 and 2378 树形dp(树的重心问题)

简单的树形dp,顺便学习了树的重心的概念,即以该点为根的树的最大子树的结点数最少. poj 1655: 1 #include <iostream> 2 #include <cstring> 3 #include <cstdio> 4 using namespace std; 5 6 const int N = 20001; 7 int head[N]; 8 int balance[N]; 9 int child[N]; 10 int n, e; 11 12 struct

POJ3398Perfect Service[树形DP 树的最大独立集变形]

Perfect Service Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 1518   Accepted: 733 Description A network is composed of N computers connected by N − 1 communication links such that any two computers can be communicated via a unique rou

POJ 2342 &amp;&amp;HDU 1520 Anniversary party 树形DP 水题

一个公司的职员是分级制度的,所有员工刚好是一个树形结构,现在公司要举办一个聚会,邀请部分职员来参加. 要求: 1.为了聚会有趣,若邀请了一个职员,则该职员的直接上级(即父节点)和直接下级(即儿子节点)都不能被邀请 2.每一个员工都有一个兴奋值,在满足1的条件下,要使得邀请来的员工的兴奋值最高 输出最高的兴奋值. 简单的树形DP dp[i][1]:表示以i为根的子树,邀请节点i的最大兴奋值 dp[i][0]:表示以i为根的子树,不邀请节点i的最大兴奋值 先根据入度找出整棵树的根节点, 然后一次DF

POJ 2057 The Lost House 经典树形DP+贪心

题意:链接 方法:树形DP+贪心 解析:这是一道好题. 好首先要明确这题求的是什么? 名义上是期望值,而实际上就是找一条路径.什么路径呢?从根节点走遍所有的叶子节点所花费步数最短的路径. 明确了题意后该怎么做呢? 首先看我们需要什么? 目前有个根节点,我们需要知道从他向一个分支走,失败步数是多少,成功步数是多少? 那么怎么维护我们需要的东西呢? 首先我们先给他们起个名:suc,fai; 其次再给一个节点的叶子节点的个数起个名:son 起名完事之后我们就要更新了. 先谈叶子节点,显然叶子节点的su

UVA 10859 - Placing Lampposts 树形DP、取双优值

                          Placing Lampposts As a part of the mission ‘Beauti?cation of Dhaka City’, the government has decided to replace all theold lampposts with new expensive ones. Since the new ones are quite expensive and the budget is notup to

UVA 10859 Placing Lampposts 树形dp(水

题目链接:点击打开链接 题意: 白书P70 思路: 简单题,每个点分放或不放. import java.io.PrintWriter; import java.util.ArrayList; import java.util.Scanner; public class Main { int min(int a,int b){return a>b?b:a;} int max(int a,int b){return a>b?a:b;} static int N = 1005; static int