leetcode中和括号匹配相关的问题共有三个,分别是:
Valid Parentheses
Given a string containing just the characters ‘(‘
, ‘)‘
, ‘{‘
, ‘}‘
, ‘[‘
and ‘]‘
,
determine if the input string is valid.
The brackets must close in the correct order, "()"
and "()[]{}"
are
all valid but "(]"
and "([)]"
are
not.
该提比较简单,正常情况下直接用堆栈就可以了,但有一次面试要求必须要用递归写,其实也很简单,具体参考这里
Longest Valid Parentheses
Given a string containing just the characters ‘(‘
and ‘)‘
,
find the length of the longest valid (well-formed) parentheses substring.
For "(()"
, the longest valid parentheses substring is "()"
,
which has length = 2.
Another example is ")()())"
, where the longest valid
parentheses substring is "()()"
, which has length =
4.
该题目使用动态规划来计算,dp[i]表示到第i个位置的最大长度,由于匹配的括号必须是连续的,所以,如果有j < i 且j和i匹配,则dp[i] = (i-j+)+dp[j]。
从转移方程来看,好像是二维DP,但是可以使用堆栈来转化为一维的,简单来说,就是遇到左括号就进栈,遇到右括号就出栈,而出栈的位置就是上
面的j,所以不需要进行二维扫描就可定位到j。
class Solution { public: int longestValidParentheses(string s) { int length = s.size(),i,maxLength = 0; vector<int> dp(length,0); stack<int> stk; // 左括号的下标 for(i = 0; i < length;++i) { if(s[i] == '(')stk.push(i); else { if(!stk.empty()) { int start = stk.top(); stk.pop(); dp[i] = i - start + 1; if(start > 0)dp[i] += dp[start-1]; if(dp[i] > maxLength)maxLength = dp[i]; } } } return maxLength; } };
Generate Parentheses
Given n pairs of parentheses, write a function to generate all combinations of well-formed parentheses.
For example, given n = 3, a solution set is:
"((()))", "(()())", "(())()", "()(())", "()()()"
该问题是著名的卡特兰数,具体参考该博客
leetcode 之 Longest Valid Parentheses,布布扣,bubuko.com