1458 poj--zoj 1733---------------动态规划DP

zoj 1733
#include <iostream>
#include <string.h>
#define N 1005
using namespace std ;
char s1[N],s2[N];
int dp[N][N];
int max(int a,int b)
{ return a>b ? a : b ; }

void f(int n,int m)
{
int i,j;
for (i=0; i<n; i++) dp[i][0]=0;
for (j=0; j<m; j++) dp[0][j]=0;
for (i=1;i<=n; i++)
for (j=1;j<=m; j++)
if (s1[i-1]==s2[j-1]) dp[i][j]=dp[i-1][j-1]+1;
else dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
}
int main()
{
int i,j,m,n;
while ( cin>>s1>>s2 )
{ n=strlen(s1);
m=strlen(s2);
f(n,m);
cout << dp[n][m] << endl ;
}
}

1458 poj--zoj 1733---------------动态规划DP,布布扣,bubuko.com

时间: 2024-10-12 21:29:34

1458 poj--zoj 1733---------------动态规划DP的相关文章

poj 1458 动态规划DP

//  poj 1458  zoj 1733  最长公共子序列  DP #include <iostream>#include <string.h>#define N 1005using namespace std ;char  s1[N],s2[N];   int dp[N][N];int max(int a,int b)   {    return a>b ? a : b ;  }void f(int n,int m){   int i,j;    for (i=0; i

[ACM] POJ 2677 Tour (动态规划,双调欧几里得旅行商问题)

Tour Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3585   Accepted: 1597 Description John Doe, a skilled pilot, enjoys traveling. While on vacation, he rents a small plane and starts visiting beautiful places. To save money, John must

Fibonacci斐波拉契数列----------动态规划DP

n==10 20 30 40 50 46 体验一下,感受一下,运行时间 #include <stdio.h>int fib(int n){ if (n<=1)     return 1; else            return fib(n-1)+fib(n-2); }int main( ){ int n; scanf("%d",&n); printf("%d\n" ,fib(n) );} 先 n==10 20 30 40 50 46

动态规划(DP),类似LIS,FatMouse&#39;s Speed

题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=1108 解题报告: 1.首先按照weight从小到大排列,weight相同的按照speed从大到小排列; 2.Count[i]表示到第i个老鼠时,所求的最长“速度递减”子序列的长度: 3.path[i]=j是题目的关键,记录在Count[i]=Count[j]时,即最长“速度递减”子序列最后一个老鼠的前一只老鼠的位置 4.递归输出id void output(in

POJ 1384 Piggy-Bank 背包DP

所谓的完全背包,就是说物品没有限制数量的. 怎么起个这么intimidating(吓人)的名字? 其实和一般01背包没多少区别,不过数量可以无穷大,那么就可以利用一个物品累加到总容量结尾就可以了. 本题要求装满的,故此增加个限制就可以了. #include <stdio.h> #include <stdlib.h> #include <string.h> inline int min(int a, int b) { return a < b? a : b; } c

(RQoj 15 采药------rwkj 10.1.5.253 1447) 动态规划 DP 1

#include <iostream>#include <string.h>using namespace std;int dp[105][1005], w[105],v[105],T,M;int max(int x,int y){ return x>y?x:y; } void f( ){ int i,j; for (i=1; i<=M; i++) for (j=0;j<=T; j++) { if (i==0) dp[i][j]=0; else dp[i][j]=

(RQoj 15 采药------rwkj 10.1.5.253 1447) 动态规划 DP 2

70 371 10069 11 2 #include <iostream>#include <string.h>using namespace std;int dp[105][1005], w[105],v[105],T,M;int max(int x,int y){ return x>y?x:y; }void f( ){ int i,j; for (i=M; i>=1; i--) for (j=0;j<=T; j++) { if (i==M+1) dp[i][j

(RQoj 15 采药------rwkj 10.1.5.253 1447) 动态规划 DP 3

#include <iostream>#include <string.h>using namespace std;int dp[1005], w[105],v[105],T,M;int max(int x,int y) { return x>y?x:y; }void f( ){ int i,j; for (i=1; i<=M; i++) for (j=T;j>=0; j--) if (j>=w[i]) dp[j]=max(dp[j],dp[j-w[i]]+

POJ 3280 Cheapest Palindrome DP题解

看到Palindrome的题目,首先想到的应该是中心问题,然后从中心出发,思考如何解决. DP问题一般是从更加小的问题转化到更加大的问题,然后是从地往上 bottom up地计算答案的. 能得出状态转移方程就好办了,本题的状态转移方程是: if (cowID[i] == cow{j]) tbl[id][i] = tbl[id][i+1];//相等的时候无需改动 else tbl[id][i] = min(tbl[!id][i+1] + cost[cowID[i]-'a'], tbl[!id][i