Jane loves string more than anything. She made a function related to the string some days ago and forgot about it. She is now confused about calculating the value of this function. She has a string T with her, and value of string S over function f can be calculated as given below:
f(S)=|S|∗NumberoftimesSoccuringinT
Jane wants to know the maximum value of f(S) among all the substrings (S) of string T. Can you help her?
Input Format
A single line containing string T in small letter(‘a‘ - ‘z‘).Output Format
An integer containing the value of output.Constraints
1 ≤|T|≤ 105Sample Input #00
aaaaaa
Sample Output #00
12
Explanation #00
f(‘a‘) = 6 f(‘aa‘) = 10 f(‘aaa‘) = 12 f(‘aaaa‘) = 12 f(‘aaaaa‘) = 10 f(‘aaaaaa‘) = 6
Sample Input #01
abcabcddd
Sample Output #01
9
Explanation #01
f("a") = 2 f("b") = 2 f("c") = 2 f("ab") = 4 f("bc") = 4 f("ddd") = 3 f("abc") = 6 f("abcabcddd") = 9
Among the function values 9 is the maximum one.
题意:求字符串所有子串中,f(s)的最大值。这里s是某个子串,f(s) = s的长度与s在原字符串中出现次数的乘积。
求得lcp, 转化为求以lcp为高的最大子矩形。
Accepted Code:
1 #include <string> 2 #include <iostream> 3 #include <algorithm> 4 using namespace std; 5 6 const int MAX_N = 100002; 7 int sa[MAX_N], rk[MAX_N], lcp[MAX_N], tmp[MAX_N], n, k; 8 9 bool compare_sa(int i, int j) { 10 if (rk[i] != rk[j]) return rk[i] < rk[j]; 11 int ri = i + k <= n ? rk[i + k] : -1; 12 int rj = j + k <= n ? rk[j + k] : -1; 13 return ri < rj; 14 } 15 16 void construct_sa(const string &S, int *sa) { 17 n = S.length(); 18 for (int i = 0; i <= n; i++) { 19 sa[i] = i; 20 rk[i] = i < n ? S[i] : -1; 21 } 22 23 for (k = 1; k <= n; k *= 2) { 24 sort(sa, sa + n + 1, compare_sa); 25 26 tmp[sa[0]] = 0; 27 for (int i = 1; i <= n; i++) { 28 tmp[sa[i]] = tmp[sa[i - 1]] + (compare_sa(sa[i - 1], sa[i]) ? 1 : 0); 29 } 30 for (int i = 0; i <= n; i++) rk[i] = tmp[i]; 31 } 32 } 33 34 void construct_lcp(const string &S, int *sa, int *lcp) { 35 n = S.length(); 36 for (int i = 0; i <= n; i++) rk[sa[i]] = i; 37 38 int h = 0; 39 lcp[0] = 0; 40 for (int i = 0; i < n; i++) { 41 int j = sa[rk[i] - 1]; 42 43 if (h > 0) h--; 44 for (; i + h < n && j + h < n; h++) if (S[i + h] != S[j + h]) break; 45 46 lcp[rk[i] - 1] = h; 47 } 48 } 49 50 string S; 51 int lft[MAX_N], rgt[MAX_N], st[MAX_N], top; 52 void solve() { 53 construct_sa(S, sa); 54 construct_lcp(S, sa, lcp); 55 56 lcp[n] = n - sa[n]; 57 // for (int i = 1; i <= n; i++) cerr << lcp[i] << ‘ ‘; 58 // cerr << endl; 59 top = 0; 60 for (int i = 1; i <= n; i++) { 61 while (top && lcp[st[top-1]] >= lcp[i]) top--; 62 if (top) lft[i] = st[top - 1] + 1; 63 else lft[i] = 1; 64 st[top++] = i; 65 } 66 top = 0; 67 for (int i = n; i > 0; i--) { 68 while (top && lcp[st[top-1]] >= lcp[i]) top--; 69 // attention: rgt[i] should be asigned to st[top - 1] 70 // rather than st[top - 1] - 1 because lcp[i] is the 71 // length of the longest common prefix of sa[i] and sa[i + 1]. 72 if (top) rgt[i] = st[top - 1]; 73 else rgt[i] = n; 74 st[top++] = i; 75 } 76 long long ans = n; 77 for (int i = 1; i <= n; i++) ans = max(ans, (long long)lcp[i] * (rgt[i] - lft[i] + 1)); 78 cout << ans << endl; 79 } 80 81 int main(void) { 82 //ios::sync_with_std(false); 83 while (cin >> S) solve(); 84 return 0; 85 }