C++ Primer 学习笔记_46_STL剖析(一):泛型程序设计、什么是STL、STL六大组件及其关系

一、泛型程序设计

1、泛型编程(generic programming):相同的逻辑和算法,对不同类型的数据进行处理

2、将程序写得尽可能通用

3、将算法从数据结构中抽象出来,成为通用的

4、C++的模板为泛型程序设计奠定了关键的基础

二、什么是STL

1、STL(Standard Template Library),即标准模板库,是一个高效的C++程序库。

2、包含了诸多在计算机科学领域里常用的基本数据结构和基本算法。为广大C++程序员们提供了一个可扩展的应用框架,高度体现了软件的可复用性

3、从逻辑层次来看,在STL中体现了泛型化程序设计的思想(generic programming)

(1)在这种思想里,大部分基本算法被抽象,被泛化,独立于与之对应的数据结构,用于以相同或相近的方式处理各种不同情形。

4、从实现层次看,整个STL是以一种类型参数化(type parameterized)的方式实现的

(1)基于模板(template)

(2)模板,泛型程序设计思想,STL的关系

模板为泛型程序设计奠定了基础

STL是一套C++标准模板库,体现了泛型程序设计思想,换句话说,STL是泛型程序设计思想比较成功的一套产品

三、STL六大组件及其关系

1、STL六大组件

————Container(容器) 各种基本数据结构

————Adapter(适配器) 可改变containers、Iterators或Function object接口的一种组件(之前通过deque是实现了新的容器Stack,Stack称为容器适配器)

————Algorithm(算法) 各种基本算法如sort、search…等

————Iterator(迭代器) 连接containers和algorithms,迭代器是容器与算法的桥梁

————Function object(函数对象)

————Allocator(分配器)

2、容器算法迭代器关系

容器是数据结构,算法是逻辑,迭代器是遍历接口

3、容器

(1)容器类是容纳、包含一组元素或元素集合的对象

(2)七种基本容器:

————向量(vector)、双端队列(deque)、列表(list)、集合(set)、多重集合(multiset)、映射(map)和多重映射(multimap)

(3)标准容器的成员绝大部分都具有共同的名称

(4)序列式容器

————序列式容器Sequence containers,其中每个元素均有固定位置——取决于插入时机和地点,和元素值无关。(vector、deque、list)

(5)关联式容器

————关联式容器Associative containers,元素位置取决于特定的排序准则以及元素值,和插入次序无关。(set、multiset、map、multimap)

(6)如何选择序列式容器

【1】、需要频繁在序列中间位置上进行插入和/或删除操作且不需要过多地在序列内部进行长距离跳转,应该选择list。不支持下标操作

【2】、vector头部与中间插入删除效率较低,在尾部插入与删除效率高。支持下标操作

【3】、deque是在头部与尾部插入与删除效率较高。支持下标操作

4、迭代器

(1)迭代器Iterators,用来在一个对象群集(collection of objects)的元素上进行遍历。这个对象群集或许是个容器,或许是容器的一部分。迭代器的主要好处是,为所有容器提供了一组很小的公共接口。迭代器以++进行累进,以*进行提领,因而它类似于指针,我们可以把它视为一种smart
pointer

(2)比如++操作可以遍历至群集内的下一个元素。至于如何做到,取决于容器内部的数据组织形式。

(3)每种容器都提供了自己的迭代器,而这些迭代器能够了解容器内部的数据结构。

5、算法

算法Algorithms,用来处理群集内的元素。它们可以出于不同的目的而搜寻、排序、修改、使用那些元素。通过迭代器的协助,我们可以只需编写一次算法,就可以将它应用于任意容器,这是因为所有的容器迭代器都提供一致的接口。

6、适配器

(1)、适配器是一种接口类(构造出新的类)

【1】为已有的类提供新的接口 stack、queue

【2】目的是简化、约束、使之安全、隐藏或者改变被修改类提供的服务集合

(2)、三种类型的适配器:

【1】容器适配器:用来扩展7种基本容器,它们和顺序容器相结合构成栈、队列和优先队列容器

【2】迭代器适配器(反向迭代器、插入迭代器、IO流迭代器)

【3】函数适配器(函数对象适配器、成员函数适配器、普通函数适配器)

7、函数对象

(1)、函数对象(function object)也称为仿函数(functor)

(2)、一个行为类似函数的对象,它可以没有参数,也可以带有若干参数。

(3)、任何重载了调用运算符operator()的类的对象都满足函数对象的特征

(4)、函数对象可以把它称之为smart function。

(5)、STL中也定义了一些标准的函数对象,如果以功能划分,可以分为算术运算、关系运算、逻辑运算三大类。为了调用这些标准函数对象,需要包含头文件<functional>。

8、分配器

负责空间配置与管理。从实现的角度来看,配置器是一个实现了动态空间配置、空间管理、空间释放的class template。

隐藏在这些容器后的内存管理工作是通过STL提供的一个默认的allocator实现的。当然,用户也可以定制自己的allocator,只要实现allocator模板所定义的接口方法即可,然后通过将自定义的allocator作为模板参数传递给STL容器,创建一个使用自定义allocator的STL容器对象,如:

stl::vector<int, UserDefinedAllocator> array;

大多数情况下,STL默认的allocator就已经足够了。这个allocator是一个由两级分配器构成的内存管理器,当申请的内存大小大于128byte时,就启动第一级分配器通过malloc直接向系统的堆空间分配,如果申请的内存大小小于128byte时,就启动第二级分配器,从一个预先分配好的内存池中取一块内存交付给用户,这个内存池由16个不同大小(8的倍数,8~128byte)的空闲列表组成,allocator会根据申请内存的大小(将这个大小round up成8的倍数)从对应的空闲块列表取表头块给用户。

这种做法有两个优点:

(1)小对象的快速分配。小对象是从内存池分配的,这个内存池是系统调用一次malloc分配一块足够大的区域给程序备用,当内存池耗尽时再向系统申请一块新的区域,整个过程类似于批发和零售,起先是由allocator向总经商批发一定量的货物,然后零售给用户,与每次都总经商要一个货物再零售给用户的过程相比,显然是快捷了。当然,这里的一个问题时,内存池会带来一些内存的浪费,比如当只需分配一个小对象时,为了这个小对象可能要申请一大块的内存池,但这个浪费还是值得的,况且这种情况在实际应用中也并不多见。

(2)避免了内存碎片的生成。程序中的小对象的分配极易造成内存碎片,给操作系统的内存管理带来了很大压力,系统中碎片的增多不但会影响内存分配的速度,而且会极大地降低内存的利用率。以内存池组织小对象的内存,从系统的角度看,只是一大块内存池,看不到小对象内存的分配和释放。

参考:

C++ primer 第四版

Effective C++ 3rd

C++编程规范

时间: 2024-10-02 23:36:07

C++ Primer 学习笔记_46_STL剖析(一):泛型程序设计、什么是STL、STL六大组件及其关系的相关文章

C++ Primer 学习笔记_46_STL实践与分析(20)--容器特有的算法

STL实践与分析 --容器特有的算法 与其它顺序容器所支持的操作相比,标准库为list容器定义了更精细的操作集合,使它不必仅仅依赖于泛型操作.当中非常大的一个原因就是list容器不是依照内存中的顺序进行布局的,不支持随即訪问,这样,在list容器上就不能使用随即訪问迭代器的算法,如sort等:还有其它的一些算法如:merge.remove.reverse和unique,尽管能够用在list上,但却付出了高昂的性能代价.因此标准库结合list的内部结构,编写出了更快算法: list容器特有的操作

C++ Primer 学习笔记_54_STL剖析(九):迭代器适配器{(插入迭代器back_insert_iterator)、IO流迭代器(istream_iterator、ostream_i

回顾 适配器 1.三种类型的适配器: (1)容器适配器:用来扩展7种基本容器,利用基本容器扩展形成了栈.队列和优先级队列 (2)迭代器适配器:(反向迭代器.插入迭代器.IO流迭代器) (3)函数适配器:函数适配器能够将仿函数和另一个仿函数(或某个值.或某个一般函数)结合起来. [1]针对成员函数的函数适配器 [2]针对一般函数的函数适配器 一.迭代器适配器 1.反向迭代器 2.插入迭代器 3.IO流迭代器 其中反向迭代器,利用正向迭代器实现可以参考以前<46_STL剖析(三)>. 二.插入迭代

C++ Primer 学习笔记_53_STL剖析(八):函数适配器:bind2nd 、mem_fun_ref 、函数适配器应用举例

回顾 五.STL中内置的函数对象 一.适配器 1.三种类型的适配器: (1)容器适配器:用来扩展7种基本容器,利用基本容器扩展形成了栈.队列和优先级队列 (2)迭代器适配器:(反向迭代器.插入迭代器.IO流迭代器) (3)函数适配器:函数适配器能够将仿函数和另一个仿函数(或某个值.或某个一般函数)结合起来. [1]针对成员函数的函数适配器 [2]针对一般函数的函数适配器 二.函数适配器 1.示例 #include <iostream> #include <algorithm> #i

C++ Primer 学习笔记_55_STL剖析(十):容器适配器(stack、 queue 、priority_queue)源码浅析与使用示例

七种基本容器:vector.deque.list.set.multiset.map.multimap 一.容器适配器 stack queue priority_queue stack.queue.priority_queue 都不支持任一种迭代器,它们都是容器适配器类型,stack是用vector/deque/list对象创建了一个先进后出容器:queue是用deque或list对象创建了一个先进先出容器:priority_queue是用vector/deque创建了一个排序队列,内部用二叉堆实

C++ Primer 学习笔记_56_STL剖析(十一)(原boost库):详解智能指针(unique_ptr(原scoped_ptr) 、shared_ptr 、weak_ptr源码分析)

注意:现在boot库已经归入STL库,用法基本上还和boost类似 在C++11中,引入了智能指针.主要有:unique_ptr, shared_ptr, weak_ptr. 这3种指针组件就是采用了boost里的智能指针方案.很多有用过boost智能指针的朋友,很容易地就能发现它们之间的关间: std boost 功能说明 unique_ptr scoped_ptr 独占指针对象,并保证指针所指对象生命周期与其一致 shared_ptr shared_ptr 可共享指针对象,可以赋值给shar

C++ Primer 学习笔记_83_模板与泛型编程 --一个泛型句柄类

模板与泛型编程 --一个泛型句柄类 引言: [小心地雷] 这个例子体现了C++相当复杂的语言应用,理解它需要很好地理解继承和模板.在熟悉了这些特性之后再研究这个例子也许会帮助.另一方面,这个例子还能很好地测试你对这些特性的理解程度. 前面示例的Sales_item和Query两个类的使用计数的实现是相同的.这类问题非常适合于泛型编程:可以定义类模板管理指针和进行使用计数.原本不相关的Sales_item类型和 Query类型,可通过使用该模板进行公共的使用计数工作而得以简化.至于是公开还是隐藏下

C++ Primer 学习笔记_45_STL实践与分析(19)--泛型算法的结构

STL实践与分析 --泛型算法的结构 引言: 正如全部的容器都建立在一致的设计模式上一样,算法也具有共同的设计基础. 算法最主要的性质是须要使用的迭代器种类.全部算法都指定了它的每一个迭代器形參可使用的迭代器类型.比方,假设形參必须为随机訪问迭代器则可提供vector或 deque类型的迭代器,或者提供指向数组的指针.而其它容器的迭代器不能用在这类算法上. C++还提供了另外两种算法模式:一种模式由算法所带的形參定义;还有一种模式则通过两种函数命名和重载的规范定义. 一.算法的形參模式 大多数的

C++ Primer 学习笔记_75_模板与泛型编程 --模板定义

模板与泛型编程 --模板定义 引言: 所谓泛型程序就是以独立于不论什么特定类型的方式编写代码.使用泛型程序时,我们须要提供详细程序实例所操作的类型或值. 模板是泛型编程的基础.使用模板时能够无须了解模板的定义. 泛型编程与面向对象编程一样,都依赖于某种形式的多态性.面向对象编程中的多态性在执行时应用于存在继承关系的类.我们能够编写使用这些类的代码,忽略基类与派生类之间类型上的差异.仅仅要使用基类的引用或指针,基类类型或派生类类型的对象就能够使用同样的代码. 在泛型编程中,我们所编写的类和函数能够

C++ Primer 学习笔记_84_模板与泛型编程 --模板特化

模板与泛型编程 --模板特化 引言: 我们并不总是能够写出对全部可能被实例化的类型都最合适的模板.某些情况下,通用模板定义对于某个类型可能是全然错误的,通用模板定义或许不能编译或者做错误的事情;另外一些情况下,能够利用关于类型的一些特殊知识,编写比从模板实例化来的函数更有效率的函数. compare函数和 Queue类都是这一问题的好样例:与C风格字符串一起使用进,它们都不能正确工作. compare函数模板: template <typename Type> int compare(cons