二十七 使用元类

type()

动态语言和静态语言最大的不同,就是函数和类的定义,不是编译时定义的,而是运行时动态创建的。

比方说我们要定义一个Hello的class,就写一个hello.py模块:

class Hello(object):
    def hello(self, name=‘world‘):
        print(‘Hello, %s.‘ % name)

当Python解释器载入hello模块时,就会依次执行该模块的所有语句,执行结果就是动态创建出一个Hello的class对象,测试如下:

>>> from hello import Hello
>>> h = Hello()
>>> h.hello()
Hello, world.
>>> print(type(Hello))
<class ‘type‘>
>>> print(type(h))
<class ‘hello.Hello‘>

type()函数可以查看一个类型或变量的类型,Hello是一个class,它的类型就是type,而h是一个实例,它的类型就是class Hello

我们说class的定义是运行时动态创建的,而创建class的方法就是使用type()函数。

type()函数既可以返回一个对象的类型,又可以创建出新的类型,比如,我们可以通过type()函数创建出Hello类,而无需通过class Hello(object)...的定义:

>>> def fn(self, name=‘world‘): # 先定义函数
...     print(‘Hello, %s.‘ % name)
...
>>> Hello = type(‘Hello‘, (object,), dict(hello=fn)) # 创建Hello class
>>> h = Hello()
>>> h.hello()
Hello, world.
>>> print(type(Hello))
<class ‘type‘>
>>> print(type(h))
<class ‘__main__.Hello‘>

要创建一个class对象,type()函数依次传入3个参数:

  1. class的名称;
  2. 继承的父类集合,注意Python支持多重继承,如果只有一个父类,别忘了tuple的单元素写法;
  3. class的方法名称与函数绑定,这里我们把函数fn绑定到方法名hello上。

通过type()函数创建的类和直接写class是完全一样的,因为Python解释器遇到class定义时,仅仅是扫描一下class定义的语法,然后调用type()函数创建出class。

正常情况下,我们都用class Xxx...来定义类,但是,type()函数也允许我们动态创建出类来,也就是说,动态语言本身支持运行期动态创建类,这和静态语言有非常大的不同,要在静态语言运行期创建类,必须构造源代码字符串再调用编译器,或者借助一些工具生成字节码实现,本质上都是动态编译,会非常复杂。

metaclass

除了使用type()动态创建类以外,要控制类的创建行为,还可以使用metaclass。

metaclass,直译为元类,简单的解释就是:

当我们定义了类以后,就可以根据这个类创建出实例,所以:先定义类,然后创建实例。

但是如果我们想创建出类呢?那就必须根据metaclass创建出类,所以:先定义metaclass,然后创建类。

连接起来就是:先定义metaclass,就可以创建类,最后创建实例。

所以,metaclass允许你创建类或者修改类。换句话说,你可以把类看成是metaclass创建出来的“实例”。

metaclass是Python面向对象里最难理解,也是最难使用的魔术代码。正常情况下,你不会碰到需要使用metaclass的情况,所以,以下内容看不懂也没关系,因为基本上你不会用到。

我们先看一个简单的例子,这个metaclass可以给我们自定义的MyList增加一个add方法:

定义ListMetaclass,按照默认习惯,metaclass的类名总是以Metaclass结尾,以便清楚地表示这是一个metaclass:

# metaclass是类的模板,所以必须从`type`类型派生:
class ListMetaclass(type):
    def __new__(cls, name, bases, attrs):
        attrs[‘add‘] = lambda self, value: self.append(value)
        return type.__new__(cls, name, bases, attrs)

有了ListMetaclass,我们在定义类的时候还要指示使用ListMetaclass来定制类,传入关键字参数metaclass

class MyList(list, metaclass=ListMetaclass):
    pass

当我们传入关键字参数metaclass时,魔术就生效了,它指示Python解释器在创建MyList时,要通过ListMetaclass.__new__()来创建,在此,我们可以修改类的定义,比如,加上新的方法,然后,返回修改后的定义。

__new__()方法接收到的参数依次是:

  1. 当前准备创建的类的对象;
  2. 类的名字;
  3. 类继承的父类集合;
  4. 类的方法集合。

测试一下MyList是否可以调用add()方法:

>>> L = MyList()
>>> L.add(1)
>> L
[1]

而普通的list没有add()方法:

>>> L2 = list()
>>> L2.add(1)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: ‘list‘ object has no attribute ‘add‘

动态修改有什么意义?直接在MyList定义中写上add()方法不是更简单吗?正常情况下,确实应该直接写,通过metaclass修改纯属变态。

但是,总会遇到需要通过metaclass修改类定义的。ORM就是一个典型的例子。

ORM全称“Object Relational Mapping”,即对象-关系映射,就是把关系数据库的一行映射为一个对象,也就是一个类对应一个表,这样,写代码更简单,不用直接操作SQL语句。

要编写一个ORM框架,所有的类都只能动态定义,因为只有使用者才能根据表的结构定义出对应的类来。

让我们来尝试编写一个ORM框架。

编写底层模块的第一步,就是先把调用接口写出来。比如,使用者如果使用这个ORM框架,想定义一个User类来操作对应的数据库表User,我们期待他写出这样的代码:

class User(Model):
    # 定义类的属性到列的映射:
    id = IntegerField(‘id‘)
    name = StringField(‘username‘)
    email = StringField(‘email‘)
    password = StringField(‘password‘)

# 创建一个实例:
u = User(id=12345, name=‘Michael‘, email=‘[email protected]‘, password=‘my-pwd‘)
# 保存到数据库:
u.save()

其中,父类Model和属性类型StringFieldIntegerField是由ORM框架提供的,剩下的魔术方法比如save()全部由metaclass自动完成。虽然metaclass的编写会比较复杂,但ORM的使用者用起来却异常简单。

现在,我们就按上面的接口来实现该ORM。

首先来定义Field类,它负责保存数据库表的字段名和字段类型:

class Field(object):

    def __init__(self, name, column_type):
        self.name = name
        self.column_type = column_type

    def __str__(self):
        return ‘<%s:%s>‘ % (self.__class__.__name__, self.name)

Field的基础上,进一步定义各种类型的Field,比如StringFieldIntegerField等等:

class StringField(Field):

    def __init__(self, name):
        super(StringField, self).__init__(name, ‘varchar(100)‘)

class IntegerField(Field):

    def __init__(self, name):
        super(IntegerField, self).__init__(name, ‘bigint‘)

下一步,就是编写最复杂的ModelMetaclass了:

class ModelMetaclass(type):

    def __new__(cls, name, bases, attrs):
        if name==‘Model‘:
            return type.__new__(cls, name, bases, attrs)
        print(‘Found model: %s‘ % name)
        mappings = dict()
        for k, v in attrs.items():
            if isinstance(v, Field):
                print(‘Found mapping: %s ==> %s‘ % (k, v))
                mappings[k] = v
        for k in mappings.keys():
            attrs.pop(k)
        attrs[‘__mappings__‘] = mappings # 保存属性和列的映射关系
        attrs[‘__table__‘] = name # 假设表名和类名一致
        return type.__new__(cls, name, bases, attrs)

以及基类Model

class Model(dict, metaclass=ModelMetaclass):

    def __init__(self, **kw):
        super(Model, self).__init__(**kw)

    def __getattr__(self, key):
        try:
            return self[key]
        except KeyError:
            raise AttributeError(r"‘Model‘ object has no attribute ‘%s‘" % key)

    def __setattr__(self, key, value):
        self[key] = value

    def save(self):
        fields = []
        params = []
        args = []
        for k, v in self.__mappings__.items():
            fields.append(v.name)
            params.append(‘?‘)
            args.append(getattr(self, k, None))
        sql = ‘insert into %s (%s) values (%s)‘ % (self.__table__, ‘,‘.join(fields), ‘,‘.join(params))
        print(‘SQL: %s‘ % sql)
        print(‘ARGS: %s‘ % str(args))

当用户定义一个class User(Model)时,Python解释器首先在当前类User的定义中查找metaclass,如果没有找到,就继续在父类Model中查找metaclass,找到了,就使用Model中定义的metaclassModelMetaclass来创建User类,也就是说,metaclass可以隐式地继承到子类,但子类自己却感觉不到。

ModelMetaclass中,一共做了几件事情:

  1. 排除掉对Model类的修改;
  2. 在当前类(比如User)中查找定义的类的所有属性,如果找到一个Field属性,就把它保存到一个__mappings__的dict中,同时从类属性中删除该Field属性,否则,容易造成运行时错误(实例的属性会遮盖类的同名属性);
  3. 把表名保存到__table__中,这里简化为表名默认为类名。

Model类中,就可以定义各种操作数据库的方法,比如save()delete()find()update等等。

我们实现了save()方法,把一个实例保存到数据库中。因为有表名,属性到字段的映射和属性值的集合,就可以构造出INSERT语句。

编写代码试试:

u = User(id=12345, name=‘Michael‘, email=‘[email protected]‘, password=‘my-pwd‘)
u.save()

输出如下:

Found model: User
Found mapping: email ==> <StringField:email>
Found mapping: password ==> <StringField:password>
Found mapping: id ==> <IntegerField:uid>
Found mapping: name ==> <StringField:username>
SQL: insert into User (password,email,username,id) values (?,?,?,?)
ARGS: [‘my-pwd‘, ‘[email protected]‘, ‘Michael‘, 12345]

可以看到,save()方法已经打印出了可执行的SQL语句,以及参数列表,只需要真正连接到数据库,执行该SQL语句,就可以完成真正的功能。

不到100行代码,我们就通过metaclass实现了一个精简的ORM框架。

小结

metaclass是Python中非常具有魔术性的对象,它可以改变类创建时的行为。这种强大的功能使用起来务必小心。

时间: 2024-11-07 17:18:28

二十七 使用元类的相关文章

python 类和元类(metaclass)的理解和简单运用

(一) python中的类 首先这里讨论的python类,都基于继承于object的新式类进行讨论. 首先在python中,所有东西都是对象.这句话非常重要要理解元类我要重新来理解一下python中的类 class Trick(object): pass 当python在执行带class语句的时候,会初始化一个类对象放在内存里面.例如这里会初始化一个Trick对象 这个对象(类)自身拥有创建对象(通常我们说的实例,但是在python中还是对象)的能力. 为了方便后续理解,我们可以先尝试一下在新式

Python基础- 类和对象(使用、继承、派生、组合、接口、多态、封装、property、staticmethod、classmethod、反射、slots、上下文管理协议、元类)

标签: python对象 2017-07-01 16:28 79人阅读 评论(0) 收藏 举报  分类: python(11)  版权声明:本文为广大朋友交流学习,如有纰漏望不吝赐教,若存在版权侵犯请及时与我联系 目录(?)[+] 一.初识类和对象 在python3中类型就是类 先定义类在产生相对应的对象,也就是现有了概念再有了实体 class Garen: camp = 'Demacia' def attack(self): print('attack') 1.如何使用类 在python3:

深刻理解Python中的元类(metaclass)以及元类实现单例模式

深刻理解Python中的元类(metaclass)以及元类实现单例模式 在看一些框架源代码的过程中碰到很多元类的实例,看起来很吃力很晦涩:在看python cookbook中关于元类创建单例模式的那一节有些疑惑.因此花了几天时间研究下元类这个概念.通过学习元类,我对python的面向对象有了更加深入的了解.这里将一篇写的非常好的文章基本照搬过来吧,这是一篇在Stack overflow上很热的帖子,我看http://blog.jobbole.com/21351/这篇博客对其进行了翻译. 一.理解

python 元类的简单解释

本文转自博客:http://www.cnblogs.com/piperck/p/5840443.html 作者:piperck python 类和元类(metaclass)的理解和简单运用 (一) python中的类 首先这里讨论的python类,都基于继承于object的新式类进行讨论. 首先在python中,所有东西都是对象.这句话非常重要要理解元类我要重新来理解一下python中的类 class Trick(object): pass 当python在执行带class语句的时候,会初始化一

8.python之面相对象part.9(初识元类part.1)

初步认识元类 #本篇文章介绍的元类,以及type以python3以上版本为准. 一.关于元类的前言. 在python中,一切皆对象,当然,类也是一个对象. class c1: pass obj1 = c1() 从上面这段例子可以看到,obj1是c1这个类创建出来的一个对象,obj1是由c1去产生的,如果按照前面的理论来理解,类也是一个对象,那么c1是由谁创建出来的呢? #type函数可以查看类型,也可以用来查看对象的类,二者是一样的 print(type(obj1)) # 输出:<class '

面向对象——元类

1.exec 1 exec(source, globals=None, locals=None, /) 2 Execute the given source in the context of globals and locals. 3 4 The source may be a string representing one or more Python statements 5 or a code object as returned by compile(). 6 The globals

反射与元类

1.isinstance与issubclass 在介绍反射之前,先来介绍两个关于类的内置方法,第一个是用来判断对象是否是某一类的对象(以前常说的判断是否是某一类型,类与类型其实是一个概念),第二个则是用来判断某一类是否是继承了另一个类 l=list([1,2,3]) print(isinstance(l,list)) #True class People: def __init__(self): pass class Chinese(People): def __init__(self): pa

面向对象进阶6:元类

六 练习题 练习一:在元类中控制把自定义类的数据属性都变成大写 class Mymetaclass(type): def __new__(cls,name,bases,attrs): update_attrs={} for k,v in attrs.items(): if not callable(v) and not k.startswith('__'): update_attrs[k.upper()]=v else: update_attrs[k]=v return type.__new__

16 元类

面向对象学习目录 1 面向对象介绍 2 类.实例.属性.方法详解 3 面向过程与面向对象进一步比较 4 类与对象 5 属性查找与绑定方法 6 小结 7 继承与派生 8 组合 9 抽象类 10 多态 11 封装 12 绑定方法与非绑定方法 13 内置方法(上) 14 内置方法(中)之描述符 15 内置方法(下) 16 元类 一 知识储备 exec:三个参数 参数一:字符串形式的命令 参数二:全局作用域(字典形式),如果不指定,默认为globals() 参数三:局部作用域(字典形式),如果不指定,默