Python 数据分析包:pandas 基础

pandas 是基于 Numpy 构建的含有更高级数据结构和工具的数据分析包

类似于 Numpy 的核心是 ndarray,pandas 也是围绕着 Series 和 DataFrame 两个核心数据结构展开的 。Series 和 DataFrame 分别对应于一维的序列和二维的表结构。pandas 约定俗成的导入方法如下:

from pandas import Series,DataFrame
import pandas as pd

Series



Series 可以看做一个定长的有序字典。基本任意的一维数据都可以用来构造 Series 对象:

>>> s = Series([1,2,3.0,‘abc‘])
>>> s
0      1
1      2
2      3
3    abc
dtype: object

虽然 dtype:object 可以包含多种基本数据类型,但总感觉会影响性能的样子,最好还是保持单纯的 dtype。

Series 对象包含两个主要的属性:index 和 values,分别为上例中左右两列。因为传给构造器的是一个列表,所以 index 的值是从 0 起递增的整数,如果传入的是一个类字典的键值对结构,就会生成 index-value 对应的 Series;或者在初始化的时候以关键字参数显式指定一个 index 对象:

>>> s = Series(data=[1,3,5,7],index = [‘a‘,‘b‘,‘x‘,‘y‘])
>>> s
a    1
b    3
x    5
y    7
dtype: int64
>>> s.index
Index([‘a‘, ‘b‘, ‘x‘, ‘y‘], dtype=‘object‘)
>>> s.values
array([1, 3, 5, 7], dtype=int64)

Series 对象的元素会严格依照给出的 index 构建,这意味着:如果 data 参数是有键值对的,那么只有 index 中含有的键会被使用;以及如果 data 中缺少响应的键,即使给出 NaN 值,这个键也会被添加。

注意 Series 的 index 和 values 的元素之间虽然存在对应关系,但这与字典的映射不同。index 和 values 实际仍为互相独立的 ndarray 数组,因此 Series 对象的性能完全 ok。

Series 这种使用键值对的数据结构最大的好处在于,Series 间进行算术运算时,index 会自动对齐。

另外,Series 对象和它的 index 都含有一个 name 属性:

>>> s.name = ‘a_series‘
>>> s.index.name = ‘the_index‘
>>> s
the_index
a            1
b            3
x            5
y            7
Name: a_series, dtype: int64

DataFrame



DataFrame 是一个表格型的数据结构,它含有一组有序的列(类似于 index),每列可以是不同的值类型(不像 ndarray 只能有一个 dtype)。基本上可以把 DataFrame 看成是共享同一个 index 的 Series 的集合。

DataFrame 的构造方法与 Series 类似,只不过可以同时接受多条一维数据源,每一条都会成为单独的一列:

>>> data = {‘state‘:[‘Ohino‘,‘Ohino‘,‘Ohino‘,‘Nevada‘,‘Nevada‘],
        ‘year‘:[2000,2001,2002,2001,2002],
        ‘pop‘:[1.5,1.7,3.6,2.4,2.9]}
>>> df = DataFrame(data)
>>> df
   pop   state  year
0  1.5   Ohino  2000
1  1.7   Ohino  2001
2  3.6   Ohino  2002
3  2.4  Nevada  2001
4  2.9  Nevada  2002

[5 rows x 3 columns]

虽然参数 data 看起来是个字典,但字典的键并非充当 DataFrame 的 index 的角色,而是 Series 的 “name” 属性。这里生成的 index 仍是 “01234”。

较完整的 DataFrame 构造器参数为:DataFrame(data=None,index=None,coloumns=None),columns 即 “name”:

>>> df = DataFrame(data,index=[‘one‘,‘two‘,‘three‘,‘four‘,‘five‘],
               columns=[‘year‘,‘state‘,‘pop‘,‘debt‘])
>>> df
       year   state  pop debt
one    2000   Ohino  1.5  NaN
two    2001   Ohino  1.7  NaN
three  2002   Ohino  3.6  NaN
four   2001  Nevada  2.4  NaN
five   2002  Nevada  2.9  NaN

[5 rows x 4 columns]

同样缺失值由 NaN 补上。看一下 index、columns 和 索引的类型:

>>> df.index
Index([‘one‘, ‘two‘, ‘three‘, ‘four‘, ‘five‘], dtype=‘object‘)
>>> df.columns
Index([‘year‘, ‘state‘, ‘pop‘, ‘debt‘], dtype=‘object‘)
>>> type(df[‘debt‘])
<class ‘pandas.core.series.Series‘>

DataFrame 面向行和面向列的操作基本是平衡的,任意抽出一列都是 Series。

对象属性


重新索引

Series 对象的重新索引通过其 .reindex(index=None,**kwargs) 方法实现。**kwargs 中常用的参数有俩:method=None,fill_value=np.NaN

ser = Series([4.5,7.2,-5.3,3.6],index=[‘d‘,‘b‘,‘a‘,‘c‘])
>>> a = [‘a‘,‘b‘,‘c‘,‘d‘,‘e‘]
>>> ser.reindex(a)
a   -5.3
b    7.2
c    3.6
d    4.5
e    NaN
dtype: float64
>>> ser.reindex(a,fill_value=0)
a   -5.3
b    7.2
c    3.6
d    4.5
e    0.0
dtype: float64
>>> ser.reindex(a,method=‘ffill‘)
a   -5.3
b    7.2
c    3.6
d    4.5
e    4.5
dtype: float64
>>> ser.reindex(a,fill_value=0,method=‘ffill‘)
a   -5.3
b    7.2
c    3.6
d    4.5
e    4.5
dtype: float64

.reindex() 方法会返回一个新对象,其 index 严格遵循给出的参数,method:{‘backfill‘, ‘bfill‘, ‘pad‘, ‘ffill‘, None} 参数用于指定插值(填充)方式,当没有给出时,自动用 fill_value 填充,默认为 NaN(ffill = pad,bfill = back fill,分别指插值时向前还是向后取值)

DataFrame 对象的重新索引方法为:.reindex(index=None,columns=None,**kwargs)。仅比 Series 多了一个可选的 columns 参数,用于给列索引。用法与上例类似,只不过插值方法method 参数只能应用于行,即轴 0。

>>> state = [‘Texas‘,‘Utha‘,‘California‘]
>>> df.reindex(columns=state,method=‘ffill‘)
    Texas  Utha  California
a      1   NaN           2
c      4   NaN           5
d      7   NaN           8

[3 rows x 3 columns]
>>> df.reindex(index=[‘a‘,‘b‘,‘c‘,‘d‘],columns=state,method=‘ffill‘)
   Texas  Utha  California
a      1   NaN           2
b      1   NaN           2
c      4   NaN           5
d      7   NaN           8

[4 rows x 3 columns]

不过 fill_value 依然对有效。聪明的小伙伴可能已经想到了,可不可以通过 df.T.reindex(index,method=‘**‘).T 这样的方式来实现在列上的插值呢,答案是可行的。另外要注意,使用 reindex(index,method=‘**‘) 的时候,index 必须是单调的,否则就会引发一个 ValueError: Must be monotonic for forward fill,比如上例中的最后一次调用,如果使用index=[‘a‘,‘b‘,‘d‘,‘c‘] 的话就不行。

删除指定轴上的项

即删除 Series 的元素或 DataFrame 的某一行(列)的意思,通过对象的.drop(labels, axis=0) 方法:

>>> ser
d    4.5
b    7.2
a   -5.3
c    3.6
dtype: float64
>>> df
   Ohio  Texas  California
a     0      1           2
c     3      4           5
d     6      7           8

[3 rows x 3 columns]
>>> ser.drop(‘c‘)
d    4.5
b    7.2
a   -5.3
dtype: float64
>>> df.drop(‘a‘)
   Ohio  Texas  California
c     3      4           5
d     6      7           8

[2 rows x 3 columns]
>>> df.drop([‘Ohio‘,‘Texas‘],axis=1)
   California
a           2
c           5
d           8

[3 rows x 1 columns]

.drop() 返回的是一个新对象,元对象不会被改变。

索引和切片

就像 Numpy,pandas 也支持通过 obj[::] 的方式进行索引和切片,以及通过布尔型数组进行过滤。

不过须要注意,因为 pandas 对象的 index 不限于整数,所以当使用非整数作为切片索引时,它是末端包含的。

>>> foo
a    4.5
b    7.2
c   -5.3
d    3.6
dtype: float64
>>> bar
0    4.5
1    7.2
2   -5.3
3    3.6
dtype: float64
>>> foo[:2]
a    4.5
b    7.2
dtype: float64
>>> bar[:2]
0    4.5
1    7.2
dtype: float64
>>> foo[:‘c‘]
a    4.5
b    7.2
c   -5.3
dtype: float64

这里 foo 和 bar 只有 index 不同——bar 的 index 是整数序列。可见当使用整数索引切片时,结果与 Python 列表或 Numpy 的默认状况相同;换成‘c‘ 这样的字符串索引时,结果就包含了这个边界元素。

另外一个特别之处在于 DataFrame 对象的索引方式,因为他有两个轴向(双重索引)。

可以这么理解:DataFrame 对象的标准切片语法为:.ix[::,::]。ix 对象可以接受两套切片,分别为行(axis=0)和列(axis=1)的方向:

>>> df
   Ohio  Texas  California
a     0      1           2
c     3      4           5
d     6      7           8

[3 rows x 3 columns]
>>> df.ix[:2,:2]
   Ohio  Texas
a     0      1
c     3      4

[2 rows x 2 columns]
>>> df.ix[‘a‘,‘Ohio‘]
0

而不使用 ix ,直接切的情况就特殊了:

  • 索引时,选取的是列
  • 切片时,选取的是行

这看起来有点不合逻辑,但作者解释说 “这种语法设定来源于实践”,我们信他。

>>> df[‘Ohio‘]
a    0
c    3
d    6
Name: Ohio, dtype: int32
>>> df[:‘c‘]
   Ohio  Texas  California
a     0      1           2
c     3      4           5

[2 rows x 3 columns]
>>> df[:2]
   Ohio  Texas  California
a     0      1           2
c     3      4           5

[2 rows x 3 columns]

使用布尔型数组的情况,注意行与列的不同切法(列切法的 : 不能省):

>>> df[‘Texas‘]>=4
a    False
c     True
d     True
Name: Texas, dtype: bool
>>> df[df[‘Texas‘]>=4]
   Ohio  Texas  California
c     3      4           5
d     6      7           8

[2 rows x 3 columns]
>>> df.ix[:,df.ix[‘c‘]>=4]
   Texas  California
a      1           2
c      4           5
d      7           8

[3 rows x 2 columns]

算术运算和数据对齐

pandas 最重要的一个功能是,它可以对不同索引的对象进行算术运算。在将对象相加时,结果的索引取索引对的并集。自动的数据对齐在不重叠的索引处引入空值,默认为 NaN。

>>> foo = Series({‘a‘:1,‘b‘:2})
>>> foo
a    1
b    2
dtype: int64
>>> bar = Series({‘b‘:3,‘d‘:4})
>>> bar
b    3
d    4
dtype: int64
>>> foo + bar
a   NaN
b     5
d   NaN
dtype: float64

DataFrame 的对齐操作会同时发生在行和列上。

当不希望在运算结果中出现 NA 值时,可以使用前面 reindex 中提到过fill_value 参数,不过为了传递这个参数,就需要使用对象的方法,而不是操作符:df1.add(df2,fill_value=0)。其他算术方法还有:sub(), div(), mul()

Series 和 DataFrame 之间的算术运算涉及广播,暂时先不讲。

函数应用和映射

Numpy 的 ufuncs(元素级数组方法)也可用于操作 pandas 对象。

当希望将函数应用到 DataFrame 对象的某一行或列时,可以使用.apply(func, axis=0, args=(), **kwds) 方法。

f = lambda x:x.max()-x.min()
>>> df
   Ohio  Texas  California
a     0      1           2
c     3      4           5
d     6      7           8

[3 rows x 3 columns]
>>> df.apply(f)
Ohio          6
Texas         6
California    6
dtype: int64
>>> df.apply(f,axis=1)
a    2
c    2
d    2
dtype: int64

排序和排名

Series 的 sort_index(ascending=True) 方法可以对 index 进行排序操作,ascending 参数用于控制升序或降序,默认为升序。

若要按值对 Series 进行排序,当使用 .order() 方法,任何缺失值默认都会被放到 Series 的末尾。

在 DataFrame 上,.sort_index(axis=0, by=None, ascending=True) 方法多了一个轴向的选择参数与一个 by 参数,by 参数的作用是针对某一(些)列进行排序(不能对行使用 by 参数):

>>> df.sort_index(by=‘Ohio‘)
   Ohio  Texas  California
a     0      1           2
c     3      4           5
d     6      7           8

[3 rows x 3 columns]
>>> df.sort_index(by=[‘California‘,‘Texas‘])
   Ohio  Texas  California
a     0      1           2
c     3      4           5
d     6      7           8

[3 rows x 3 columns]
>>> df.sort_index(axis=1)
   California  Ohio  Texas
a           2     0      1
c           5     3      4
d           8     6      7

[3 rows x 3 columns]

排名(Series.rank(method=‘average‘, ascending=True))的作用与排序的不同之处在于,他会把对象的 values 替换成名次(从 1 到 n)。这时唯一的问题在于如何处理平级项,方法里的 method 参数就是起这个作用的,他有四个值可选:average, min, max, first

>>> ser=Series([3,2,0,3],index=list(‘abcd‘))
>>> ser
a    3
b    2
c    0
d    3
dtype: int64
>>> ser.rank()
a    3.5
b    2.0
c    1.0
d    3.5
dtype: float64
>>> ser.rank(method=‘min‘)
a    3
b    2
c    1
d    3
dtype: float64
>>> ser.rank(method=‘max‘)
a    4
b    2
c    1
d    4
dtype: float64
>>> ser.rank(method=‘first‘)
a    3
b    2
c    1
d    4
dtype: float64

注意在 ser[0]=ser[3] 这对平级项上,不同 method 参数表现出的不同名次。

DataFrame 的 .rank(axis=0, method=‘average‘, ascending=True) 方法多了个 axis 参数,可选择按行或列分别进行排名,暂时好像没有针对全部元素的排名方法。

统计方法

pandas 对象有一些统计方法。它们大部分都属于约简和汇总统计,用于从 Series 中提取单个值,或从 DataFrame 的行或列中提取一个 Series。

比如 DataFrame.mean(axis=0,skipna=True) 方法,当数据集中存在 NA 值时,这些值会被简单跳过,除非整个切片(行或列)全是 NA,如果不想这样,则可以通过 skipna=False 来禁用此功能:

>>> df
    one  two
a  1.40  NaN
b  7.10 -4.5
c   NaN  NaN
d  0.75 -1.3

[4 rows x 2 columns]
>>> df.mean()
one    3.083333
two   -2.900000
dtype: float64
>>> df.mean(axis=1)
a    1.400
b    1.300
c      NaN
d   -0.275
dtype: float64
>>> df.mean(axis=1,skipna=False)
a      NaN
b    1.300
c      NaN
d   -0.275
dtype: float64

其他常用的统计方法有:

######################## ******************************************
count 非 NA 值的数量
describe 针对 Series 或 DF 的列计算汇总统计
min , max 最小值和最大值
argmin , argmax 最小值和最大值的索引位置(整数)
idxmin , idxmax 最小值和最大值的索引值
quantile 样本分位数(0 到 1)
sum 求和
mean 均值
median 中位数
mad 根据均值计算平均绝对离差
var 方差
std 标准差
skew 样本值的偏度(三阶矩)
kurt 样本值的峰度(四阶矩)
cumsum 样本值的累计和
cummin , cummax 样本值的累计最大值和累计最小值
cumprod 样本值的累计积
diff 计算一阶差分(对时间序列很有用)
pct_change 计算百分数变化

处理缺失数据



pandas 中 NA 的主要表现为 np.nan,另外 Python 内建的 None 也会被当做 NA 处理。

处理 NA 的方法有四种:dropna , fillna , isnull , notnull 。

is(not)null

这一对方法对对象做元素级应用,然后返回一个布尔型数组,一般可用于布尔型索引。

dropna

对于一个 Series,dropna 返回一个仅含非空数据和索引值的 Series。

问题在于对 DataFrame 的处理方式,因为一旦 drop 的话,至少要丢掉一行(列)。这里的解决方式与前面类似,还是通过一个额外的参数:dropna(axis=0, how=‘any‘, thresh=None) ,how 参数可选的值为 any 或者 all。all 仅在切片元素全为 NA 时才抛弃该行(列)。另外一个有趣的参数是 thresh,该参数的类型为整数,它的作用是,比如 thresh=3,会在一行中至少有 3 个非 NA 值时将其保留。

fillna

fillna(value=None, method=None, axis=0) 中的 value 参数除了基本类型外,还可以使用字典,这样可以实现对不同的列填充不同的值。method 的用法与前面 .reindex() 方法相同,这里不再赘述。

inplace 参数



前面有个点一直没讲,结果整篇示例写下来发现还挺重要的。就是 Series 和 DataFrame 对象的方法中,凡是会对数组作出修改并返回一个新数组的,往往都有一个 replace=False 的可选参数。如果手动设定为 True,那么原数组就可以被替换。

时间: 2024-10-16 04:40:54

Python 数据分析包:pandas 基础的相关文章

Python 数据分析:Pandas 缺省值的判断

Python 数据分析:Pandas 缺省值的判断 背景 我们从数据库中取出数据存入 Pandas None 转换成 NaN 或 NaT.但是,我们将 Pandas 数据写入数据库时又需要转换成 None,不然就会报错.因此,我们就需要处理 Pandas 的缺省值. 样本数据 id name password sn sex age amount content remark login_date login_at created_at 0 1 123456789.0 NaN NaN NaN 20

基于 Python 和 Pandas 的数据分析(2) --- Pandas 基础

在这个用 Python 和 Pandas 实现数据分析的教程中, 我们将明确一些 Pandas 基础知识. 加载到 Pandas Dataframe 的数据形式可以很多, 但是通常需要能形成行和列的数据集. 所以可以是如下的 dictionary 的形式: web_stats = {'Day':[1,2,3,4,5,6], 'Visitors':[43,34,65,56,29,76], 'Bounce Rate':[65,67,78,65,45,52]} 我们可以通过如下方式把这个 dictio

快速学习 Python 数据分析包 之 pandas

最近在看时间序列分析的一些东西,中间普遍用到一个叫pandas的包,因此单独拿出时间来进行学习. 参见 pandas 官方文档 http://pandas.pydata.org/pandas-docs/stable/index.html 以及相关博客 http://www.cnblogs.com/chaosimple/p/4153083.html Pandas介绍 Pandas是python的一个数据分析包,最初由AQR Capital Management于2008年4月开发,并于2009年底

数据分析:pandas 基础

pandas 是基于 Numpy 构建的含有更高级数据结构和工具的数据分析包 类似于 Numpy 的核心是 ndarray,pandas 也是围绕着 Series 和 DataFrame 两个核心数据结构展开的 .Series 和 DataFrame 分别对应于一维的序列和二维的表结构.pandas 约定俗成的导入方法如下: lang:python from pandas import Series,DataFrame import pandas as pd <br /> Series Ser

Python数据分析之pandas学习

Python中的pandas模块进行数据分析. 接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利用pandas的DataFrames进行统计分析5.利用pandas实现SQL操作6.利用pandas进行缺失值的处理7.利用pandas实现Excel的数据透视表功能8.多层索引的使用 一.数据结构介绍 在pandas中有两类非常重要的数据结构,即序列Series和数据框DataFrame.Ser

零基础学习Python web开发、Python爬虫、Python数据分析,从基础到项目实战!

随着大数据和人工智能的发展,目前Python语言的上升趋势比较明显,而且由于Python语言简单易学,所以不少初学者往往也会选择Python作为入门语言. Python语言目前是IT行业内应用最为广泛的编程语言之一,尤其是近几年来随着大数据和人工智能(机器学习.自然语言处理.计算机视觉等)的发展,Python也得到了越来越广泛的应用,另外Python在Web开发.后端开发和嵌入式开发领域也有广泛的应用. 小编推荐一个学Python的学习裙,九三七六六七 五零九,无论你是大牛还是小白,是想转行还是

利用Python进行数据分析(15) pandas基础: 字符串操作

  字符串对象方法 split()方法拆分字符串: strip()方法去掉空白符和换行符: split()结合strip()使用: "+"符号可以将多个字符串连接起来: join()方法也是连接字符串,比较它和"+"符号的区别: in关键字判断一个字符串是否包含在另一个字符串中: index()方法和find()方法判断一个子字符串的位置: index()方法和find()方法的区别是:如果不包含子字符串,index()会抛出一个异常,而find()会返回-1. c

利用Python进行数据分析(11) pandas基础: 层次化索引

层次化索引 层次化索引指你能在一个数组上拥有多个索引,例如: 有点像Excel里的合并单元格对么? 根据索引选择数据子集 以外层索引的方式选择数据子集: 以内层索引的方式选择数据: 多重索引Series转换为DataFrame 层次化索引在数据重塑和分组中扮演着很重要的角色,例如,上面的层次化索引数据可以转换为一个DataFrame: 对于一个DataFrame,横轴和竖轴都可以有层次化索引,例如: 重排分级顺序 根据索引交换 swaplevel()函数可以将两个级别的数据进行交换,例如: 根据

利用Python进行数据分析(14) pandas基础: 数据转换

数据转换指的是对数据的过滤.清理以及其他的转换操作. 移除重复数据 DataFrame里经常会出现重复行,DataFrame提供一个duplicated()方法检测各行是否重复,另一个drop_duplicates()方法用于丢弃重复行: duplicated()和drop_duplicates()方法默认判断全部列,如果不想这样,传入列的集合作为参数可以指定按列判断,例如: duplicated()和drop_duplicates()方法默认保留第一个出现的值,传入take_last=True