Hadoop学习总结之四:Map-Reduce的过程解析

转:http://www.cnblogs.com/forfuture1978/archive/2010/11/19/1882268.html

时间: 2024-11-03 21:06:33

Hadoop学习总结之四:Map-Reduce的过程解析的相关文章

Hadoop的HDFS和Map/Reduce

HDFS HDFS是一个具有高度容错性的分布式文件系统,适合部署在廉价的机器上,它具有以下几个特点: 1)适合存储非常大的文件 2)适合流式数据读取,即适合"只写一次,读多次"的数据处理模式 3)适合部署在廉价的机器上 但HDFS不适合以下场景(任何东西都要分两面看,只有适合自己业务的技术才是真正的好技术): 1)不适合存储大量的小文件,因为受Namenode内存大小限制 2)不适合实时数据读取,高吞吐量和实时性是相悖的,HDFS选择前者 3)不适合需要经常修改数据的场景 HDFS的架

Hadoop 2.4.1 Map/Reduce小结

看了下MapReduce的例子.再看了下Mapper和Reducer源码,理清了参数的意义,就o了. public class Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT> public class Reducer<KEYIN,VALUEIN,KEYOUT,VALUEOUT> Map是打散过程,把输入的数据,拆分成若干的键值对.Reduce是重组的,根据前面的键值对,重组数据. 自己写Map/Reduce的话,理解了如何拆分数据.组装数据,理解了

Hadoop 学习笔记四--JobTracker 的执行过程

Hadoop中MapReduce 的执行也是采用Master/Slave 主从结构的方式.其中JobTracker 充当了Master的角色,而TaskTracker 充当了Slave 的角色.Master负责接受客户端提交的Job,然后调度Job的每一个子任务Task运行于Slave上,并监控它们.如果发现所有失败的Task就重新运行它,slave则负责直接执行每一个Task. 当Hadoop启动的时候,JobTracker 是作为单独的一个JVM来运行的.JobTracker 会一直等待Jo

Hadoop 使用Combiner提高Map/Reduce程序效率

众所周知,Hadoop框架使用Mapper将数据处理成一个<key,value>键值对,再网络节点间对其进行整理(shuffle),然后使用Reducer处理数据并进行最终输出. 在上述过程中,我们看到至少两个性能瓶颈: 如果我们有10亿个数据,Mapper会生成10亿个键值对在网络间进行传输,但如果我们只是对数据求最大值,那么很明显的Mapper只需要输出它所知道的最大值即可.这样做不仅可以减轻网络压力,同样也可以大幅度提高程序效率. 使用专利中的国家一项来阐述数据倾斜这个定义.这样的数据远

Python学习十三:map/reduce

map()和reduce()是Python内建的两个高阶函数.怎么理解他们呢? 用法: 1.map():map函数接收两个参数,一个是函数,一个是序列,map将传入的函数依次作用到序列的每个元素,并把结果作为新的list返回. 2.reduce():reduce把一个函数作用在一个序列[x1, x2, x3-]上,这个函数必须接收两个参数,reduce把结果继续和序列的下一个元素做累积计算,其效果就是: reduce(f, [x1, x2, x3, x4]) = f(f(f(x1, x2), x

Hadoop 学习笔记三 --JobClient 的执行过程

一. MapReduce 作业处理过程概述 当用户在使用Hadoop 的 MapReduce 计算模型处理问题的时候,只需要设计好Mapper 和Reducer 处理函数,还有可能包括Combiner 函数.之后,新建一个Job 对象,并对Job 的运行环境进行一些配置,最后调用Job 的waitForCompletion 或者 submit 方法来提交作业即可.代码如下: 1 //新建默认的Job 配置对象 2 Configuration conf = new Configuration();

Hadoop学习总结之五:Hadoop的运行痕迹

Hadoop学习总结之五:Hadoop的运行痕迹 Hadoop 学习总结之一:HDFS简介 Hadoop学习总结之二:HDFS读写过程解析 Hadoop学习总结之三:Map-Reduce入门 Hadoop学习总结之四:Map-Reduce的过程解析 在使用hadoop的时候,可能遇到各种各样的问题,然而由于hadoop的运行机制比较复杂,因而出现了问题的时候比较难于发现问题. 本文欲通过某种方式跟踪Hadoop的运行痕迹,方便出现问题的时候可以通过这些痕迹来解决问题. 一.环境的搭建 为了能够跟

Hadoop学习笔记—19.Flume框架学习

START:Flume是Cloudera提供的一个高可用的.高可靠的开源分布式海量日志收集系统,日志数据可以经过Flume流向需要存储终端目的地.这里的日志是一个统称,泛指文件.操作记录等许多数据. 一.Flume基础理论 1.1 常见的分布式日志收集系统 Scribe是facebook开源的日志收集系统,在facebook内部已经得到大量的应用. Chukwa 是一个开源的用于监控大型分布式系统的数据收集系统.这是构建在 hadoop 的 hdfs 和 map/reduce 框架之上的,继承了

Hadoop学习:Map/Reduce初探与小Demo实现

一.    概念知识介绍 Hadoop MapReduce是一个用于处理海量数据的分布式计算框架.这个框架攻克了诸如数据分布式存储.作业调度.容错.机器间通信等复杂问题,能够使没有并行 处理或者分布式计算经验的project师,也能非常轻松地写出结构简单的.应用于成百上千台机器处理大规模数据的并行分布式程序. Hadoop MapReduce基于"分而治之"的思想,将计算任务抽象成map和reduce两个计算过程,能够简单理解为"分散运算-归并结果"的过程.一个 M