scoke摘要

关闭

永不磨灭的意志

/* ----------------500G的电影拷到了U盘上,U盘的重量会不会增加?----------------------*/

赠书 | 异步2周年,技术图书免费选      每周荐书:渗透测试、K8s、架构(评论送书)      项目管理+代码托管+文档协作,开发更流畅

Socket通信原理和实践

2013-04-13 22:34 71959人阅读 评论(8) 收藏 举报

 分类:

网络管理(3) 

目录(?)[+]

我们深谙信息交流的价值,那网络中进程之间如何通信,如我们每天打开浏览器浏览网页时,浏览器的进程怎么与web服务器通信的?当你用QQ聊天时,QQ进程怎么与服务器或你好友所在的QQ进程通信?这些都得靠socket?那什么是socket?socket的类型有哪些?还有socket的基本函数,这些都是本文想介绍的。本文的主要内容如下:

  • 1、网络中进程之间如何通信?
  • 2、Socket是什么?
  • 3、socket的基本操作
    • 3.1、socket()函数
    • 3.2、bind()函数
    • 3.3、listen()、connect()函数
    • 3.4、accept()函数
    • 3.5、read()、write()函数等
    • 3.6、close()函数
  • 4、socket中TCP的三次握手建立连接详解
  • 5、socket中TCP的四次握手释放连接详解
  • 6、一个例子

1、网络中进程之间如何通信?

本地的进程间通信(IPC)有很多种方式,但可以总结为下面4类:

  • 消息传递(管道、FIFO、消息队列)
  • 同步(互斥量、条件变量、读写锁、文件和写记录锁、信号量)
  • 共享内存(匿名的和具名的)
  • 远程过程调用(Solaris门和Sun RPC)

但这些都不是本文的主题!我们要讨论的是网络中进程之间如何通信?首要解决的问题是如何唯一标识一个进程,否则通信无从谈起!在本地可以通过进程PID来唯一标识一个进程,但是在网络中这是行不通的。其实TCP/IP协议族已经帮我们解决了这个问题,网络层的“ip地址”可以唯一标识网络中的主机,而传输层的“协议+端口”可以唯一标识主机中的应用程序(进程)。这样利用三元组(ip地址,协议,端口)就可以标识网络的进程了,网络中的进程通信就可以利用这个标志与其它进程进行交互。

使用TCP/IP协议的应用程序通常采用应用编程接口:UNIX  BSD的套接字(socket)和UNIX System V的TLI(已经被淘汰),来实现网络进程之间的通信。就目前而言,几乎所有的应用程序都是采用socket,而现在又是网络时代,网络中进程通信是无处不在,这就是我为什么说“一切皆socket”。

2、什么是Socket?

上面我们已经知道网络中的进程是通过socket来通信的,那什么是socket呢?socket起源于Unix,而Unix/Linux基本哲学之一就是“一切皆文件”,都可以用“打开open –> 读写write/read –> 关闭close”模式来操作。我的理解就是Socket就是该模式的一个实现,socket即是一种特殊的文件,一些socket函数就是对其进行的操作(读/写IO、打开、关闭),这些函数我们在后面进行介绍。

socket一词的起源

在组网领域的首次使用是在1970年2月12日发布的文献IETF RFC33中发现的,撰写者为Stephen Carr、Steve Crocker和Vint Cerf。根据美国计算机历史博物馆的记载,Croker写道:“命名空间的元素都可称为套接字接口。一个套接字接口构成一个连接的一端,而一个连接可完全由一对套接字接口规定。”计算机历史博物馆补充道:“这比BSD的套接字接口定义早了大约12年。”

3、socket的基本操作

既然socket是“open—write/read—close”模式的一种实现,那么socket就提供了这些操作对应的函数接口。下面以TCP为例,介绍几个基本的socket接口函数。

3.1、socket()函数

int socket(int domain, int type, int protocol);

socket函数对应于普通文件的打开操作。普通文件的打开操作返回一个文件描述字,而socket()用于创建一个socket描述符(socket descriptor),它唯一标识一个socket。这个socket描述字跟文件描述字一样,后续的操作都有用到它,把它作为参数,通过它来进行一些读写操作。

正如可以给fopen的传入不同参数值,以打开不同的文件。创建socket的时候,也可以指定不同的参数创建不同的socket描述符,socket函数的三个参数分别为:

  • domain:即协议域,又称为协议族(family)。常用的协议族有,AF_INET、AF_INET6、AF_LOCAL(或称AF_UNIX,Unix域socket)、AF_ROUTE等等。协议族决定了socket的地址类型,在通信中必须采用对应的地址,如AF_INET决定了要用ipv4地址(32位的)与端口号(16位的)的组合、AF_UNIX决定了要用一个绝对路径名作为地址。
  • type:指定socket类型。常用的socket类型有,SOCK_STREAM、SOCK_DGRAM、SOCK_RAW、SOCK_PACKET、SOCK_SEQPACKET等等(socket的类型有哪些?)。
  • protocol:故名思意,就是指定协议。常用的协议有,IPPROTO_TCP、IPPTOTO_UDP、IPPROTO_SCTP、IPPROTO_TIPC等,它们分别对应TCP传输协议、UDP传输协议、STCP传输协议、TIPC传输协议(这个协议我将会单独开篇讨论!)。

注意:并不是上面的type和protocol可以随意组合的,如SOCK_STREAM不可以跟IPPROTO_UDP组合。当protocol为0时,会自动选择type类型对应的默认协议。

当我们调用socket创建一个socket时,返回的socket描述字它存在于协议族(address family,AF_XXX)空间中,但没有一个具体的地址。如果想要给它赋值一个地址,就必须调用bind()函数,否则就当调用connect()、listen()时系统会自动随机分配一个端口。

3.2、bind()函数

正如上面所说bind()函数把一个地址族中的特定地址赋给socket。例如对应AF_INET、AF_INET6就是把一个ipv4或ipv6地址和端口号组合赋给socket。

int bind(int sockfd, const struct sockaddr *addr, socklen_t addrlen);

函数的三个参数分别为:

  • sockfd:即socket描述字,它是通过socket()函数创建了,唯一标识一个socket。bind()函数就是将给这个描述字绑定一个名字。
  • addr:一个const struct sockaddr *指针,指向要绑定给sockfd的协议地址。这个地址结构根据地址创建socket时的地址协议族的不同而不同,如ipv4对应的是: 
    struct sockaddr_in {
        sa_family_t    sin_family; /* address family: AF_INET */
        in_port_t      sin_port;   /* port in network byte order */
        struct in_addr sin_addr;   /* internet address */
    };
    
    /* Internet address. */
    struct in_addr {
        uint32_t       s_addr;     /* address in network byte order */
    };

    ipv6对应的是:

    struct sockaddr_in6 {
        sa_family_t     sin6_family;   /* AF_INET6 */
        in_port_t       sin6_port;     /* port number */
        uint32_t        sin6_flowinfo; /* IPv6 flow information */
        struct in6_addr sin6_addr;     /* IPv6 address */
        uint32_t        sin6_scope_id; /* Scope ID (new in 2.4) */
    };
    
    struct in6_addr {
        unsigned char   s6_addr[16];   /* IPv6 address */
    };

    Unix域对应的是:

    #define UNIX_PATH_MAX    108
    
    struct sockaddr_un {
        sa_family_t sun_family;               /* AF_UNIX */
        char        sun_path[UNIX_PATH_MAX];  /* pathname */
    };
  • addrlen:对应的是地址的长度。

通常服务器在启动的时候都会绑定一个众所周知的地址(如ip地址+端口号),用于提供服务,客户就可以通过它来接连服务器;而客户端就不用指定,有系统自动分配一个端口号和自身的ip地址组合。这就是为什么通常服务器端在listen之前会调用bind(),而客户端就不会调用,而是在connect()时由系统随机生成一个。

网络字节序与主机字节序

主机字节序就是我们平常说的大端和小端模式:不同的CPU有不同的字节序类型,这些字节序是指整数在内存中保存的顺序,这个叫做主机序。引用标准的Big-Endian和Little-Endian的定义如下:

  a) Little-Endian就是低位字节排放在内存的低地址端,高位字节排放在内存的高地址端。

  b) Big-Endian就是高位字节排放在内存的低地址端,低位字节排放在内存的高地址端。

网络字节序:4个字节的32 bit值以下面的次序传输:首先是0~7bit,其次8~15bit,然后16~23bit,最后是24~31bit。这种传输次序称作大端字节序。由于TCP/IP首部中所有的二进制整数在网络中传输时都要求以这种次序,因此它又称作网络字节序。字节序,顾名思义字节的顺序,就是大于一个字节类型的数据在内存中的存放顺序,一个字节的数据没有顺序的问题了。

所以:在将一个地址绑定到socket的时候,请先将主机字节序转换成为网络字节序,而不要假定主机字节序跟网络字节序一样使用的是Big-Endian。由于这个问题曾引发过血案!公司项目代码中由于存在这个问题,导致了很多莫名其妙的问题,所以请谨记对主机字节序不要做任何假定,务必将其转化为网络字节序再赋给socket。

3.3、listen()、connect()函数

如果作为一个服务器,在调用socket()、bind()之后就会调用listen()来监听这个socket,如果客户端这时调用connect()发出连接请求,服务器端就会接收到这个请求。

int listen(int sockfd, int backlog);
int connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen);

listen函数的第一个参数即为要监听的socket描述字,第二个参数为相应socket可以排队的最大连接个数。socket()函数创建的socket默认是一个主动类型的,listen函数将socket变为被动类型的,等待客户的连接请求。

connect函数的第一个参数即为客户端的socket描述字,第二参数为服务器的socket地址,第三个参数为socket地址的长度。客户端通过调用connect函数来建立与TCP服务器的连接。

3.4、accept()函数

TCP服务器端依次调用socket()、bind()、listen()之后,就会监听指定的socket地址了。TCP客户端依次调用socket()、connect()之后就想TCP服务器发送了一个连接请求。TCP服务器监听到这个请求之后,就会调用accept()函数取接收请求,这样连接就建立好了。之后就可以开始网络I/O操作了,即类同于普通文件的读写I/O操作。

int accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen);

accept函数的第一个参数为服务器的socket描述字,第二个参数为指向struct sockaddr *的指针,用于返回客户端的协议地址,第三个参数为协议地址的长度。如果accpet成功,那么其返回值是由内核自动生成的一个全新的描述字,代表与返回客户的TCP连接。

注意:accept的第一个参数为服务器的socket描述字,是服务器开始调用socket()函数生成的,称为监听socket描述字;而accept函数返回的是已连接的socket描述字。一个服务器通常通常仅仅只创建一个监听socket描述字,它在该服务器的生命周期内一直存在。内核为每个由服务器进程接受的客户连接创建了一个已连接socket描述字,当服务器完成了对某个客户的服务,相应的已连接socket描述字就被关闭。

3.5、read()、write()等函数

万事具备只欠东风,至此服务器与客户已经建立好连接了。可以调用网络I/O进行读写操作了,即实现了网咯中不同进程之间的通信!网络I/O操作有下面几组:

  • read()/write()
  • recv()/send()
  • readv()/writev()
  • recvmsg()/sendmsg()
  • recvfrom()/sendto()

我推荐使用recvmsg()/sendmsg()函数,这两个函数是最通用的I/O函数,实际上可以把上面的其它函数都替换成这两个函数。它们的声明如下:

       #include <unistd.h>

       ssize_t read(int fd, void *buf, size_t count);
       ssize_t write(int fd, const void *buf, size_t count);

       #include <sys/types.h>
       #include <sys/socket.h>

       ssize_t send(int sockfd, const void *buf, size_t len, int flags);
       ssize_t recv(int sockfd, void *buf, size_t len, int flags);

       ssize_t sendto(int sockfd, const void *buf, size_t len, int flags,
                      const struct sockaddr *dest_addr, socklen_t addrlen);
       ssize_t recvfrom(int sockfd, void *buf, size_t len, int flags,
                        struct sockaddr *src_addr, socklen_t *addrlen);

       ssize_t sendmsg(int sockfd, const struct msghdr *msg, int flags);
       ssize_t recvmsg(int sockfd, struct msghdr *msg, int flags);

read函数是负责从fd中读取内容.当读成功时,read返回实际所读的字节数,如果返回的值是0表示已经读到文件的结束了,小于0表示出现了错误。如果错误为EINTR说明读是由中断引起的,如果是ECONNREST表示网络连接出了问题。

write函数将buf中的nbytes字节内容写入文件描述符fd.成功时返回写的字节数。失败时返回-1,并设置errno变量。 在网络程序中,当我们向套接字文件描述符写时有俩种可能。1)write的返回值大于0,表示写了部分或者是全部的数据。2)返回的值小于0,此时出现了错误。我们要根据错误类型来处理。如果错误为EINTR表示在写的时候出现了中断错误。如果为EPIPE表示网络连接出现了问题(对方已经关闭了连接)。

其它的我就不一一介绍这几对I/O函数了,具体参见man文档或者baidu、Google,下面的例子中将使用到send/recv。

3.6、close()函数

在服务器与客户端建立连接之后,会进行一些读写操作,完成了读写操作就要关闭相应的socket描述字,好比操作完打开的文件要调用fclose关闭打开的文件。

#include <unistd.h>
int close(int fd);

close一个TCP socket的缺省行为时把该socket标记为以关闭,然后立即返回到调用进程。该描述字不能再由调用进程使用,也就是说不能再作为read或write的第一个参数。

注意:close操作只是使相应socket描述字的引用计数-1,只有当引用计数为0的时候,才会触发TCP客户端向服务器发送终止连接请求。

4、socket中TCP的三次握手建立连接详解

我们知道tcp建立连接要进行“三次握手”,即交换三个分组。大致流程如下:

  • 客户端向服务器发送一个SYN J
  • 服务器向客户端响应一个SYN K,并对SYN J进行确认ACK J+1
  • 客户端再想服务器发一个确认ACK K+1

只有就完了三次握手,但是这个三次握手发生在socket的那几个函数中呢?请看下图:

图1、socket中发送的TCP三次握手

从图中可以看出,当客户端调用connect时,触发了连接请求,向服务器发送了SYN J包,这时connect进入阻塞状态;服务器监听到连接请求,即收到SYN J包,调用accept函数接收请求向客户端发送SYN K ,ACK J+1,这时accept进入阻塞状态;客户端收到服务器的SYN K ,ACK J+1之后,这时connect返回,并对SYN K进行确认;服务器收到ACK K+1时,accept返回,至此三次握手完毕,连接建立。

总结:客户端的connect在三次握手的第二个次返回,而服务器端的accept在三次握手的第三次返回。

5、socket中TCP的四次握手释放连接详解

上面介绍了socket中TCP的三次握手建立过程,及其涉及的socket函数。现在我们介绍socket中的四次握手释放连接的过程,请看下图:

图2、socket中发送的TCP四次握手

图示过程如下:

  • 某个应用进程首先调用close主动关闭连接,这时TCP发送一个FIN M;
  • 另一端接收到FIN M之后,执行被动关闭,对这个FIN进行确认。它的接收也作为文件结束符传递给应用进程,因为FIN的接收意味着应用进程在相应的连接上再也接收不到额外数据;
  • 一段时间之后,接收到文件结束符的应用进程调用close关闭它的socket。这导致它的TCP也发送一个FIN N;
  • 接收到这个FIN的源发送端TCP对它进行确认。

这样每个方向上都有一个FIN和ACK。

6.下面给出实现的一个实例

首先,先给出实现的截图

服务器端代码如下:

[cpp] view plaincopy

  1. #include "InitSock.h"
  2. #include <stdio.h>
  3. #include <iostream>
  4. using namespace std;
  5. CInitSock initSock;     // 初始化Winsock库
  6. int main()
  7. {
  8. // 创建套节字
  9. SOCKET sListen = ::socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
  10. //用来指定套接字使用的地址格式,通常使用AF_INET
  11. //指定套接字的类型,若是SOCK_DGRAM,则用的是udp不可靠传输
  12. //配合type参数使用,指定使用的协议类型(当指定套接字类型后,可以设置为0,因为默认为UDP或TCP)
  13. if(sListen == INVALID_SOCKET)
  14. {
  15. printf("Failed socket() \n");
  16. return 0;
  17. }
  18. // 填充sockaddr_in结构 ,是个结构体
  19. /* struct sockaddr_in {
  20. short sin_family;  //地址族(指定地址格式) ,设为AF_INET
  21. u_short sin_port; //端口号
  22. struct in_addr sin_addr; //IP地址
  23. char sin_zero[8]; //空子节,设为空
  24. } */
  25. sockaddr_in sin;
  26. sin.sin_family = AF_INET;
  27. sin.sin_port = htons(4567);  //1024 ~ 49151:普通用户注册的端口号
  28. sin.sin_addr.S_un.S_addr = INADDR_ANY;
  29. // 绑定这个套节字到一个本地地址
  30. if(::bind(sListen, (LPSOCKADDR)&sin, sizeof(sin)) == SOCKET_ERROR)
  31. {
  32. printf("Failed bind() \n");
  33. return 0;
  34. }
  35. // 进入监听模式
  36. //2指的是,监听队列中允许保持的尚未处理的最大连接数
  37. if(::listen(sListen, 2) == SOCKET_ERROR)
  38. {
  39. printf("Failed listen() \n");
  40. return 0;
  41. }
  42. // 循环接受客户的连接请求
  43. sockaddr_in remoteAddr;
  44. int nAddrLen = sizeof(remoteAddr);
  45. SOCKET sClient = 0;
  46. char szText[] = " TCP Server Demo! \r\n";
  47. while(sClient==0)
  48. {
  49. // 接受一个新连接
  50. //((SOCKADDR*)&remoteAddr)一个指向sockaddr_in结构的指针,用于获取对方地址
  51. sClient = ::accept(sListen, (SOCKADDR*)&remoteAddr, &nAddrLen);
  52. if(sClient == INVALID_SOCKET)
  53. {
  54. printf("Failed accept()");
  55. }
  56. printf("接受到一个连接:%s \r\n", inet_ntoa(remoteAddr.sin_addr));
  57. continue ;
  58. }
  59. while(TRUE)
  60. {
  61. // 向客户端发送数据
  62. gets(szText) ;
  63. ::send(sClient, szText, strlen(szText), 0);
  64. // 从客户端接收数据
  65. char buff[256] ;
  66. int nRecv = ::recv(sClient, buff, 256, 0);
  67. if(nRecv > 0)
  68. {
  69. buff[nRecv] = ‘\0‘;
  70. printf(" 接收到数据:%s\n", buff);
  71. }
  72. }
  73. // 关闭同客户端的连接
  74. ::closesocket(sClient);
  75. // 关闭监听套节字
  76. ::closesocket(sListen);
  77. return 0;
  78. }

客户端代码:

[cpp] view plaincopy

  1. #include "InitSock.h"
  2. #include <stdio.h>
  3. #include <iostream>
  4. using namespace std;
  5. CInitSock initSock;     // 初始化Winsock库
  6. int main()
  7. {
  8. // 创建套节字
  9. SOCKET s = ::socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
  10. if(s == INVALID_SOCKET)
  11. {
  12. printf(" Failed socket() \n");
  13. return 0;
  14. }
  15. // 也可以在这里调用bind函数绑定一个本地地址
  16. // 否则系统将会自动安排
  17. // 填写远程地址信息
  18. sockaddr_in servAddr;
  19. servAddr.sin_family = AF_INET;
  20. servAddr.sin_port = htons(4567);
  21. // 注意,这里要填写服务器程序(TCPServer程序)所在机器的IP地址
  22. // 如果你的计算机没有联网,直接使用127.0.0.1即可
  23. servAddr.sin_addr.S_un.S_addr = inet_addr("127.0.0.1");
  24. if(::connect(s, (sockaddr*)&servAddr, sizeof(servAddr)) == -1)
  25. {
  26. printf(" Failed connect() \n");
  27. return 0;
  28. }
  29. char buff[256];
  30. char szText[256] ;
  31. while(TRUE)
  32. {
  33. //从服务器端接收数据
  34. int nRecv = ::recv(s, buff, 256, 0);
  35. if(nRecv > 0)
  36. {
  37. buff[nRecv] = ‘\0‘;
  38. printf("接收到数据:%s\n", buff);
  39. }
  40. // 向服务器端发送数据
  41. gets(szText) ;
  42. szText[255] = ‘\0‘;
  43. ::send(s, szText, strlen(szText), 0) ;
  44. }
  45. // 关闭套节字
  46. ::closesocket(s);
  47. return 0;
  48. }

封装的InitSock.h

[cpp] view plaincopy

  1. #include <winsock2.h>
  2. #include <stdlib.h>
  3. #include <conio.h>
  4. #include <stdio.h>
  5. #pragma comment(lib, "WS2_32")  // 链接到WS2_32.lib
  6. class CInitSock
  7. {
  8. public:
  9. CInitSock(BYTE minorVer = 2, BYTE majorVer = 2)
  10. {
  11. // 初始化WS2_32.dll
  12. WSADATA wsaData;
  13. WORD sockVersion = MAKEWORD(minorVer, majorVer);
  14. if(::WSAStartup(sockVersion, &wsaData) != 0)
  15. {
  16. exit(0);
  17. }
  18. }
  19. ~CInitSock()
  20. {
  21. ::WSACleanup();
  22. }
  23. };
时间: 2024-10-04 17:24:59

scoke摘要的相关文章

Httpclient处理摘要认证

虽然摘要认证的安全性比BASIC认证提高了不少,但是从接口调用上来看,并不比BASIC认证复杂,而且Realm和Scheme参数都可以为空,这时候就和BASIC认证的调用方式一模一样了. import java.net.URI; import org.apache.http.auth.AuthScope; import org.apache.http.auth.UsernamePasswordCredentials; import org.apache.http.client.Credentia

特性(摘要)

特性(摘要) 特性(attribute),让我们可以为代码标记一些信息,而这样的信息又可以从外部读取,并通过各种方式来影响我们所定义的类型的使用方式.这种手段通常被称为对代码进行“装饰(decorating)”. 举例来说,比如我们要创建的某个类包含了一个极其简单的方法(简单到我们不必去理会他).但在应用程序调试期间,可能还是不得不通过代码的逐行检查而调试它.在这种情况下,我们就可以对该方法添加一个特性,告诉VS在调试时不要进入该方法进行逐句调试,而是应该跳过该方法直接调试下一条语句.这样的特性

a byte of vim -- 学习摘要

说在前面的话 -- a byte of vim 是我见过的最介绍vim 最好的书,想了解强大的vim的人,或者是已经在使用vim而打算进一步了解的人,我感觉都应该看看这个,内容精炼但涵盖很广,--"vim为什么这么强大",当看完这本书时,我想你就能完全的了解了--此外,本书是一英文版,但很简单,学语言的同时学习英语很不多-- 附上最新版的下载链接 http://download.csdn.net/detail/wuzhimang/8933257  ,当然上官网才是硬道理 以下是自己针对

C/C++使用openssl进行摘要和加密解密(md5, sha256, des, rsa)

openssl里面有很多用于摘要哈希.加密解密的算法,方便集成于工程项目,被广泛应用于网络报文中的安全传输和认证.下面以md5,sha256,des,rsa几个典型的api简单使用作为例子. 算法介绍 md5:https://en.wikipedia.org/wiki/MD5 sha256:https://en.wikipedia.org/wiki/SHA-2 des: https://en.wikipedia.org/wiki/Data_Encryption_Standard rsa: htt

获取和修改摘要信息

static void zffObjectARX_MyCommand15(void) { AcDbDatabase* pDb=acdbHostApplicationServices()->workingDatabase(); AcDbDatabaseSummaryInfo* pSum=NULL; Acad::ErrorStatus es=acdbGetSummaryInfo(pDb,pSum); ACHAR* title; pSum->getTitle(title); acutPrintf(_

caption,为表格增加标题和摘要

格式: <table summary="***"> <caption>***</caption> <tr> </tr> </table> 注意:摘要是不会在浏览器中显示的,只是增加表格的可读性.标题是描述表格内容,增加在表格上方.

详解摘要认证

1. 什么是摘要认证 摘要认证与基础认证的工作原理很相似,用户先发出一个没有认证证书的请求,Web服务器回复一个带有WWW-Authenticate头的响应,指明访问所请求的资源需要证书.但是和基础认证发送以Base 64编码的用户名和密码不同,在摘要认证中服务器让客户端选一个随机数(称作"nonce"),然后浏览器使用一个单向的加密函数生成一个消息摘要(message digest),该摘要是关于用户名.密码.给定的nonce值.HTTP方法,以及所请求的URL. 2. 摘要认证算法

dede摘要默认长度的限制

今晚做企业站,发现摘要长度一直被限制在250字节.上网上找了找,貌似解决办法很多,但是好像很多都无效.好在试到最后找到了解决办法: 1.进人数据库,更改表dede_archives里description字段为blob长度改为想要的长度: 2.进入根目录/dede/article_edit.php找到$description = cn_substrR($description,250);改为 $description = cn_substrR($description,2000);这里我设置了长

HTTP - 摘要认证

基本认证便捷灵活,但极不安全.用户名和密码都是以明文形式传送的,也没有采取任何措施防止对报文的篡改.安全使用基本认证的唯一方式就是将其与 SSL 配合使用. 摘要认证是另一种 HTTP 认证协议,它与基本认证兼容,但却更为安全.摘要认证试图修复基本认证协议的严重缺陷.具体来说,摘要认证进行了如下改下: 永远不会以明文方式在网络上发送密码. 可以防止恶意用户捕获并重放认证的握手过程. 可以有选择地防止对报文内容的篡改. 防范其他几种常见的攻击方式. 摘要认证并不是最安全的协议.摘要认证并不能满足安