机器学习实战-python相关软件库的安装

机器学习实战-python相关软件库的安装的相关文章

NBC朴素贝叶斯分类器 ————机器学习实战 python代码

# -*- coding: utf-8 -*- """ Created on Mon Aug 07 23:40:13 2017 @author: mdz """ import numpy as np def loadData(): vocabList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], ['maybe', 'not', 'take', 'him', 'to',

windows下64位python的安装及机器学习相关包的安装(实用)

开通博客已久,想了好久决定写个基础的安装教程,望后人少走弯路,也借此希望跟大家多多交流.文中给出的链接默认是基于对python2.7的前提下的包. 1.首先下载64位Python包,进行安装(默认python2.7.6) 下载链接:https://www.baidu.com/link?url=i1EA542Pi-dNF0hi9veKLT6dDlsur0X0n3H81kEOUxwwlnbNvyRiwu8jP_E9Bwi5AjuqDK1isRmuYd9H3SdecbdIOnQiTwAv6t8uTUQ

python机器学习实战(三)

python机器学习实战(三) 版权声明:本文为博主原创文章,转载请指明转载地址 www.cnblogs.com/fydeblog/p/7277205.html  前言 这篇博客是关于机器学习中基于概率论的分类方法--朴素贝叶斯,内容包括朴素贝叶斯分类器,垃圾邮件的分类,解析RSS源数据以及用朴素贝叶斯来分析不同地区的态度. 操作系统:ubuntu14.04 运行环境:anaconda-python2.7-jupyter notebook 参考书籍:机器学习实战和源码,机器学习(周志华) not

《机器学习实战》之K-均值聚类算法的python实现

<机器学习实战>之K-均值聚类算法的python实现 最近的项目是关于"基于数据挖掘的电路故障分析",项目基本上都是师兄们在做,我只是在研究关于项目中用到的如下几种算法:二分均值聚类.最近邻分类.基于规则的分类器以及支持向量机.基于项目的保密性(其实也没有什么保密的,但是怕以后老板看到我写的这篇博文,所以,你懂的),这里就不介绍"基于数据挖掘的电路故障分析"的思路了. 废话不多说了,开始正题哈. 基本K-均值聚类算法 基本K均值算法的基本思路为:首先选择

Python机器学习实战&lt;三&gt;:k-邻近算法

安装说明参考openssl源码文件夹下INSTALL.W32 step1 环境搭建 安装perl,Visual Studio 2008 下载Openssl最新版源码.我下的版本为OpenSSL-1.0.0g. step2 启动Visual Studio 2008 Command Prompt 运行bin\vcvars32 设置 环境变量 注意: 如遇反馈"此处不应该有/Microsoft",参考错误1. step3 VS命令行窗口cd至openssl源码文件夹 执行以下命令 $perl

Python机器学习实战&amp;lt;一&amp;gt;:环境的配置

详细要学习的书籍就是<机器学习实战>Machine Learning in Action,Peter Harrington Windows下要安装3个文件,各自是; 1.Python(因为python不是向下兼容的,所以推荐2.7版本号),网址:http://www.python.org 2.numpy(python的科学计算包),网址:http://sourceforge.net/projects/numpy/ 3.matplotlib(python图标包),网址:http://source

Python机器学习实战&lt;一&gt;:环境的配置

具体要学习的书籍就是<机器学习实战>Machine Learning in Action,Peter Harrington Windows下要安装3个文件,分别是; 1.Python(由于python不是向下兼容的,所以推荐2.7版本),网址:http://www.python.org 2.numpy(python的科学计算包),网址:http://sourceforge.net/projects/numpy/ 3.matplotlib(python图标包),网址:http://sourcef

机器学习实战笔记(Python实现)-03-朴素贝叶斯

--------------------------------------------------------------------------------------- 本系列文章为<机器学习实战>学习笔记,内容整理自书本,网络以及自己的理解,如有错误欢迎指正. 源码在Python3.5上测试均通过,代码及数据 --> https://github.com/Wellat/MLaction -----------------------------------------------

《机器学习实战》之二分K-均值聚类算法的python实现

<机器学习实战>之二分K-均值聚类算法的python实现 上面博文介绍了K-均值聚类算法及其用python实现,上篇博文中的两张截图,我们可以看到,由于K-均值聚类算法中由于初始质心的选取,会造成聚类的局部最优,并不是全局最优,因此,会造成聚类的效果并不理想,为克服K-均值算法收敛于局部最小值的问题,就有了二分K-均值算法. 二分K-均值聚类算法 二分K均值算法是基本K均值算法的直接扩充,其基本思想是:为了得到K个簇,首先将所有点的集合分裂成两个簇,然后从这些簇中选取一个继续分裂,迭代直到产生