F(x)
Time Limit: 1000/500 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2188 Accepted Submission(s): 827
Problem Description
For a decimal number x with n digits (AnAn-1An-2 ... A2A1), we define its weight as F(x) = An * 2n-1 + An-1 * 2n-2 + ... + A2
* 2 + A1 * 1. Now you are given two numbers A and B, please calculate how many numbers are there between 0 and B, inclusive, whose weight is no more than F(A).
Input
The first line has a number T (T <= 10000) , indicating the number of test cases.
For each test case, there are two numbers A and B (0 <= A,B < 109)
Output
For every case,you should output "Case #t: " at first, without quotes. Thet is the case number starting from 1. Then output the answer.
Sample Input
3 0 100 1 10 5 100
Sample Output
Case #1: 1 Case #2: 2 Case #3: 13
Source
2013 ACM/ICPC Asia Regional Chengdu Online
我们定义十进制数x的权值为f(x) = a(n)*2^(n-1)+a(n-1)*2(n-2)+...a(2)*2+a(1)*1,a(i)表示十进制数x中第i位的数字。
题目给出a,b,求出0~b有多少个不大于f(a)的数。
第一次独立用递归完成数位dp
#include<map> #include<string> #include<cstring> #include<cstdio> #include<cstdlib> #include<cmath> #include<queue> #include<vector> #include<iostream> #include<algorithm> #include<bitset> #include<climits> #include<list> #include<iomanip> #include<stack> #include<set> using namespace std; int dp[20][(1<<9)*9],bit[20]; int dfs(int len,int sum,bool e) { if(len==0) return sum>=0; if(!e&&dp[len][sum]!=-1) return dp[len][sum]; int n=e?bit[len]:9,ans=0; for(int i=0;i<=n;i++) { int t=sum-i*(1<<len-1); if(t>=0) ans+=dfs(len-1,t,e&&i==n); else break; } return e?ans:dp[len][sum]=ans; } int cg(int x) { int tail=0; while(x) { bit[++tail]=x%10; x/=10; } return tail; } int cnt(int x) { int ans=0; for(int i=cg(x);i>0;i--) ans+=(1<<i-1)*bit[i]; return ans; } int main() { memset(dp,-1,sizeof(dp)); int T; cin>>T; for(int cs=1;cs<=T;cs++) { int a,b; cin>>a>>b; int sum=cnt(a),ans=dfs(cg(b),sum,1); cout<<"Case #"<<cs<<": "<<ans<<endl; } }