Introduction to Probability (5) Continus random variable

CONTINUOUS RANDOM VARIABLES AND PDFS 

连续的随机变量,顾名思义。就是随机变量的取值范围是连续的值,比如汽车的速度。气温。假设我们要利用这些參数来建模。那么就须要引入连续随机变量。

假设随机变量X是连续的,那么它的概率分布函数能够用一个连续的非负函数来表示,这个非负函数称作连续随机变量的概率密度函数(probability density function)。并且满足:

假设B是一个连续的区间,那么:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZnJvZ19pbl9hX3dlbGw=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" width="300" height="70" >

要注意的是不论什么一个点的概率是等于零的,由于:

所以对与表示概率时的大于等于。小于等于能够等同于大于和小于:

概率密度函数除了非零这个条件外,另一个条件。依据概率三公理之中的一个的normalization,连续随机变量的总概率等于1:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZnJvZ19pbl9hX3dlbGw=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" width="300" height="65" >

为了直观的理解连续随机变量的概率是什么,例如以下图,连续随机变量在某个区间发生的概率等于该变量概率密度函数在该区间下的面积,如图阴影部分:

所以。对于连续随机变量在区间δ发生的概率为:

直观的表演示样例如以下:

Expectation

连续随机变量X的期望值公式例如以下。就是将离散随机变量中的求和改为了积分:

对于随即变量x的函数。其期望值例如以下:

方差例如以下:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZnJvZ19pbl9hX3dlbGw=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" width="300" height="40" >

and:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZnJvZ19pbl9hX3dlbGw=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" width="300" height="40" >

同理离散随机变量,连续随机变量也符合线性原则:

CUMULATIVE
DISTRIBUTION FUNCTIONS 

随机变量的累计概率是指,P(X ≤ x)的概率。表演示样例如以下:

连续随机变量有下面性质:

-单调非递减性:

-FX(x)趋近于0当x趋近于负无穷,FX(x)趋近于1当x趋近于正无穷。

-假设x是离散随机变量。那么FX(x)呈阶梯状上升。假设x是连续随机变量,那么FX(x)呈连续变化上升状。下图分别为离散和连续随机变量的CDF。

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZnJvZ19pbl9hX3dlbGw=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" width="600" height="160" >

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZnJvZ19pbl9hX3dlbGw=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" width="600" height="160" >

-假设x是离散随机变量,那么它的PMF能够通过CDF相减得到,CDF能够通过对PMF相加得到:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZnJvZ19pbl9hX3dlbGw=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" width="300" height="80" >

-假设x是连续随机变量,那么它的CDF能够通过对PDF做定积分得到,PDF能够通过对CDF微分得到。

NORMAL RANDOM VARIABLES

正态分布的PDF表演示样例如以下:

μ 是随机变量X的期望,即均值。σ 是随机变量X的标准差。所以方差为σ2

正态分布也满足概率和为一的定理:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZnJvZ19pbl9hX3dlbGw=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" width="300" height="70" >

其PDF和CDF例如以下图所看到的(均值为1,方差为1的正态分布):

当然,正态分布也满足连续随机变量的一般性质:

The Standard Normal Random Variable

标准正态分布是指均值为0,标准差为1的正态分布。它的CDF能够表示为,它的经常使用值被做成了表以供查找:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZnJvZ19pbl9hX3dlbGw=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" width="400" height="70" >

假设Y等于:,那么我们能够将不熟悉的Y转变成X再做计算。公式例如以下:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZnJvZ19pbl9hX3dlbGw=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" width="300" height="34" >

CONDITIONING ON AN EVENT

连续随机变量X与事件A的条件概率表演示样例如以下:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZnJvZ19pbl9hX3dlbGw=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" width="300" height="60" >

类似离散随机变量的条件概率公式,连续随机变量的条件概率例如以下:

连续随机变量X的期望:

对于X的函数g(x)的期望:

相对于离散函数的total probability,连续随机变量也有:

MULTIPLE CONTINUOUS RANDOM VARIABLES

两个连续随机变量的联合分布表演示样例如以下:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZnJvZ19pbl9hX3dlbGw=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" width="300" height="60" >

相同要注意的是f(x,y)是非负的函数。对于一定区间的x,y的概率表演示样例如以下:

像一个随机变量的一样,两个随机变量的PDF满足:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZnJvZ19pbl9hX3dlbGw=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" width="300" height="60" >

为了直观的了解两个随机变量的概念,令:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZnJvZ19pbl9hX3dlbGw=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" width="400" height="50" >

假设δ无限小,那么双随机变量的概率就相当于是函数f(x,y)在δ2 覆盖下的体积。

连续随机变量的边际概率等于。与离散随机变量的求和相应的是积分:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZnJvZ19pbl9hX3dlbGw=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" width="300" height="70" >

Expectation

两个随机变量的期望等于:

且有:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZnJvZ19pbl9hX3dlbGw=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" width="300" height="40" >

Conditioning One Random Variable on Another

X,Y是连续随机变量。其联合分布为:fX,Y,  X相对于Y的条件概率为:

条件概率也满足normalization的公式:

期望和条件概率的期望例如以下:

Inference and the Continuous Bayes’ Rule

对于连续的随机变量,也存在贝叶斯准则:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZnJvZ19pbl9hX3dlbGw=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" width="300" height="50" >

对于X是离散随机变量,Y是连续随机变量,贝叶斯准则例如以下:

依据全概率准则,能够得到f(y):

Independence

连续型随机变量和离散型随机变量的独立类似:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZnJvZ19pbl9hX3dlbGw=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" width="300" height="30" >

x与y独立,说明x的发生与否不给y的发生与否提供不论什么信息。反之亦然,那么:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZnJvZ19pbl9hX3dlbGw=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" width="300" height="20" >

假设x,y相互独立,那么他们的乘积的期望等于他们期望的乘积:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZnJvZ19pbl9hX3dlbGw=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" width="300" height="45" >

另外他们的方差也呈线性:

Joint CDFs

连续随机变量的联合CDF表示为:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZnJvZ19pbl9hX3dlbGw=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" width="400" height="50" >

反之。通过二次偏微分能够求得其PDF:

More than Two Random Variables

对于大于两个连续型随机变量的概率公式能够依次类推:

DERIVED DISTRIBUTIONS

对于要求一个连续随机变量的PDF这类问题,我们时常通过绕弯路的方法先求其CDF,再通过对CDF微分求得其PDF。

对于连续随机变量X的线性函数,有:

对于单调函数:

直观的感受是f(X)乘以dh(y)等于P(X),而f(y)乘以dy也等于P(X).例如以下图:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZnJvZ19pbl9hX3dlbGw=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" width="400" height="350" >

最后回想一下这一章典型的连续型随机变量:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZnJvZ19pbl9hX3dlbGw=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" width="600" height="560" >

版权声明:本文博主原创文章。博客,未经同意不得转载。

时间: 2024-10-20 19:34:07

Introduction to Probability (5) Continus random variable的相关文章

Introduction to Probability (5) Discrete random variable

1.Basic concept 随机变量的定义:随机变量是指针对实验结果的函数. 随机变量的函数可以生成另外一个随机变量 离散型随机变量的定义: 离散型随机变量是指有有限个取值的实验结果的实值函数.每个离散型随机变量有PMF给出每个随机变量取值的概率. 2.PMF(probability mass function) 如何获得PMF? 将随机变量X取值x的所有概率相加,得到Px(x). 伯努利分布:对于一件事情发生与否的概率分布,发生的概率为P,例如掷一枚硬币,head的概率为P,那么PMF为:

Book Report( Fuzzy random variable , MST , Possibilistic programming)

Book Report on “Fuzzy random minimum spanning tree problems through possibilistic programming and the expectation optimization model” Part1: Theoretical basis 1.Fuzzy random variable 2.MST.Minimal Ratio Spanning Tree    3.Possibilistic    Programming

Codeforces Round #348 (VK Cup 2016 Round 2, Div. 1 Edition) C. Little Artem and Random Variable 数学

C. Little Artem and Random Variable Little Artyom decided to study probability theory. He found a book with a lot of nice exercises and now wants you to help him with one of them. Consider two dices. When thrown each dice shows some integer from 1 to

Introduction to Probability (三) Independence

两个事件独立性的定义是:事件A的发生对事件B的发生毫无影响,即从A的发生与否,我们不能推测出B是否发生. 从概率等式的表示来看就是B在A发生的情况下发生的概率等于B发生的概率本身. 进而引出了A与B同时发生的概率等于他们各自发生的概率的乘积. 从两事件的相互独立可以引出多个事件的独立性: 如果多个事件同时发生的概率等于他们各自发生的概率的乘积,那么他们是互相独立的. Introduction to Probability (三) Independence,布布扣,bubuko.com

Introduction to Probability (4) Counting

当我们计算概率的时候,假设样本空间中的各个样本发生的概率均等,那么,时间A发生的概率为: 所以我们只需要计算时间A包含的样本个数,比上总的样本数,就能得到事件A发生的概率. 基本的counting原则 假设一次实验共有r个阶段,每个阶段有ni种选择,那么总的样本空间是各个阶段的各种选择的乘积. 排列permutation与组合combination 当我们要从n个样本中选取k个样本时,我们所面临的是一个组合问题,这个时候如果需要考虑顺序,那么就变成了一个排列问题. 组合 以下是从n个样本中选取k

Jmeter入门16 数据构造之随机数Random Variable & __Random函数

 接口测试有时参数使用随机数构造.jmeter添加随机数两种方式 1  添加配置 > Random Variable  2  __Random函数   ${__Random(1000,9999)} 方式一 Random Variable  方式二  __Random()函数 添加http请求,2个参数:订单号,用户分别是两种方式生成的. 订单号 = 日期+__Random函数生成随机数 用户名= 随机变量输出的固定格式随机数 random_function orderid_${__time(yy

Fuzzy Probability Theory---(3)Discrete Random Variables

We start with the fuzzy binomial. Then we discuss the fuzzy Poisson probability mass function. Fuzzy Binomial Let $E$ be a non-empty, proper subset of $X=\{x_1,x_2,x_3,...,x_n\}$. Let $P(E)=p$ so that $P(E^{'})=1-p$ where $p\in (0,1)$. Suppose we hav

CF 668C Little Artem and Random Variable

题目链接:http://codeforces.com/problemset/problem/641/D 题目大意:一共有两个骰子,每个骰子都有n个面,上面分别是1到n,投到每个面的概率不可知,但是知道投到每个面也就是每个值的最大的概率与最小的概率分别是多少,问两个骰子投到每个面的概率分别是多少 解题思路:数学题 字超级丑请忽略 其中ax是a骰子得到x的概率,bx是b骰子得到x的概率 它们相加等于得到最大x与得到最小x的概率相加,然后用ax表示bx,替换1式中的ax,就能得到一元二次方程,直接解就

3.Discrete Random Variables and Probability Distributions

1. Random Variables Random variables  variable: because different numerical values are possible; random: because the observed value depends on which of the possible experimental outcomes results. For a given sample space δ of some experiment, a rando