那些情况该使用它们spin_lock到spin_lock_irqsave【转】

转自:http://blog.csdn.net/wesleyluo/article/details/8807919

权声明:本文为博主原创文章,未经博主允许不得转载。

Spinlock的目的是用来同步SMP中会被多个CPU同时存取的变量。在Linux中,普通的spinlock由于不带额外的语义,是用起来反而要非常小心。

在Linux kernel中执行的代码大体分normal和interrupt context两种。tasklet/softirq可以归为normal因为他们可以进入等待;nested interrupt是interrupt context的一种特殊情况,当然也是interrupt context。Normal级别可以被interrupt抢断,interrupt会被另一个interrupt抢断,但不会被normal中断。各个 interrupt之间没有优先级关系,只要有可能,每个interrupt都会被其他interrupt中断。

我们先考虑单CPU的情况。在这样情况下,不管在什么执行级别,我们只要简单地把CPU的中断关掉就可以达到独占处理的目的。从这个角度来说,spinlock的实现简单地令人乍舌:cli/sti。只要这样,我们就关闭了preemption带来的复杂之门。

单CPU的情况很简单,多CPU就不那么简单了。单纯地关掉当前CPU的中断并不会给我们带来好运。当我们的代码存取一个shared variable时,另一颗CPU随时会把数据改得面目全非。我们需要有手段通知它(或它们,你知道我的意思)——spinlock正为此设。这个例子是我们的第一次尝试:

extern spinlock_t lock;
// ...
spin_lock(&lock);
// do something
spin_unlock(&lock);

他能正常工作吗?答案是有可能。在某些情况下,这段代码可以正常工作,但想一想会不会发生这样的事:

// in normal run level
extern spinlock_t lock;
// ...
spin_lock(&lock);
// do something
                                                                           // interrupted by IRQ ...

// in IRQ
                                                                         extern spinlock_t lock;
                                                                         spin_lock(&lock);

喔,我们在normal级别下获得了一个spinlock,正当我们想做什么的时候,我们被interrupt打断了,CPU转而执行interrupt level的代码,它也想获得这个lock,于是“死锁”发生了!解决方法很简单,看看我们第二次尝试:

extern spinlock_t lock;
// ...
cli; // disable interrupt on current CPU
spin_lock(&lock);
// do something
spin_unlock(&lock);
sti; // enable interrupt on current CPU

在获得spinlock之前,我们先把当前CPU的中断禁止掉,然后获得一个lock;在释放lock之后再把中断打开。这样,我们就防止了死锁。事实上,Linux提供了一个更为快捷的方式来实现这个功能:

extern spinlock_t lock;
// ...
spin_lock_irq(&lock);
// do something
spin_unlock_irq(&lock);

如果没有nested interrupt,所有这一切都很好。加上nested interrupt,我们再来看看这个例子:

// code 1
extern spinlock_t lock1;
// ...
spin_lock_irq(&lock);
// do something
spin_unlock_irq(&lock);

// code 2
extern spinlock_t lock2;
// ...
spin_lock_irq(&lock2);
// do something
spin_unlock_irq(&lock2);

Code 1和code 2都可运行在interrupt下,我们很容易就可以想到这样的运行次序():

Code 1                                                                        Code 2

extern spinlock_t lock1;

// ...

spin_lock_irq(&lock1);

extern spinlock_t lock2;

// ...
spin_lock_irq(&lock1);

// do something

spin_unlock_irq(&lock2);

// do something

spin_unlock_irq(&lock1);

问题是在第二个spin_unlock_irq后这个CPU的中断已经被打开,“死锁”的问题又会回到我们身边!

解决方法是我们在每次关闭中断前纪录当前中断的状态,然后恢复它而不是直接把中断打开。

unsigned long flags;
local_irq_save(flags);
spin_lock(&lock);
// do something
spin_unlock(&lock);
local_irq_restore(flags);

Linux同样提供了更为简便的方式:

unsigned long flags;
spin_lock_irqsave(&lock, flags);
// do something

spin_unlock_irqrestore(&lock, flags);

总结:

如果被保护的共享资源只在进程上下文访问和软中断上下文访问,那么当在进程上下文访问共享资源时,可能被软中断打断,从而可能进入软中断上下文来对被保护的共享资源访问,因此对于这种情况,对共享资源的访问必须使用spin_lock_bh和spin_unlock_bh来保护。

  当然使用spin_lock_irq和spin_unlock_irq以及spin_lock_irqsave和spin_unlock_irqrestore也可以,它们失效了本地硬中断,失效硬中断隐式地也失效了软中断。但是使用spin_lock_bh和spin_unlock_bh是最恰当的,它比其他两个快。

  如果被保护的共享资源只在进程上下文和tasklet或timer上下文访问,那么应该使用与上面情况相同的获得和释放锁的宏,因为tasklet和timer是用软中断实现的。

  如果被保护的共享资源只在一个tasklet或timer上下文访问,那么不需要任何自旋锁保护,因为同一个tasklet或timer只能在一个CPU上运行,即使是在SMP环境下也是如此。实际上tasklet在调用tasklet_schedule标记其需要被调度时已经把该tasklet绑定到当前CPU,因此同一个tasklet决不可能同时在其他CPU上运行。

  timer也是在其被使用add_timer添加到timer队列中时已经被帮定到当前CPU,所以同一个timer绝不可能运行在其他CPU上。当然同一个tasklet有两个实例同时运行在同一个CPU就更不可能了。

  如果被保护的共享资源只在两个或多个tasklet或timer上下文访问,那么对共享资源的访问仅需要用spin_lock和spin_unlock来保护,不必使用_bh版本,因为当tasklet或timer运行时,不可能有其他tasklet或timer在当前CPU上运行。

 如果被保护的共享资源只在一个软中断(tasklet和timer除外)上下文访问,那么这个共享资源需要用spin_lock和spin_unlock来保护,因为同样的软中断可以同时在不同的CPU上运行。

  如果被保护的共享资源在两个或多个软中断上下文访问,那么这个共享资源当然更需要用spin_lock和spin_unlock来保护,不同的软中断能够同时在不同的CPU上运行。

  如果被保护的共享资源在软中断(包括tasklet和timer)或进程上下文和硬中断上下文访问,那么在软中断或进程上下文访问期间,可能被硬中断打断,从而进入硬中断上下文对共享资源进行访问,因此,在进程或软中断上下文需要使用spin_lock_irq和spin_unlock_irq来保护对共享资源的访问。

  而在中断处理句柄中使用什么版本,需依情况而定,如果只有一个中断处理句柄访问该共享资源,那么在中断处理句柄中仅需要spin_lock和spin_unlock来保护对共享资源的访问就可以了。

  因为在执行中断处理句柄期间,不可能被同一CPU上的软中断或进程打断。但是如果有不同的中断处理句柄访问该共享资源,那么需要在中断处理句柄中使用spin_lock_irq和spin_unlock_irq来保护对共享资源的访问。

  在使用spin_lock_irq和spin_unlock_irq的情况下,完全可以用spin_lock_irqsave和spin_unlock_irqrestore取代,那具体应该使用哪一个也需要依情况而定,如果可以确信在对共享资源访问前中断是使能的,那么使用spin_lock_irq更好一些。

  因为它比spin_lock_irqsave要快一些,但是如果你不能确定是否中断使能,那么使用spin_lock_irqsave和spin_unlock_irqrestore更好,因为它将恢复访问共享资源前的中断标志而不是直接使能中断。

  当然,有些情况下需要在访问共享资源时必须中断失效,而访问完后必须中断使能,这样的情形使用spin_lock_irq和spin_unlock_irq最好。

  spin_lock用于阻止在不同CPU上的执行单元对共享资源的同时访问以及不同进程上下文互相抢占导致的对共享资源的非同步访问,而中断失效和软中断失效却是为了阻止在同一CPU上软中断或中断对共享资源的非同步访问

时间: 2024-08-05 21:18:33

那些情况该使用它们spin_lock到spin_lock_irqsave【转】的相关文章

Linux 内核的同步机制,第 1 部分 + 第二部分(转)

http://blog.csdn.net/jk198310/article/details/9264721  原文地址: Linux 内核的同步机制,第 1 部分 一. 引言 在现代操作系统里,同一时间可能有多个内核执行流在执行,因此内核其实象多进程多线程编程一样也需要一些同步机制来同步各执行单元对共享数据的访问.尤其是在多处理器系统上,更需要一些同步机制来同步不同处理器上的执行单元对共享的数据的访问.在主流的Linux内核中包含了几乎所有现代的操作系统具有的同步机制,这些同步机制包括:原子操作

把握linux内核设计(十):内核同步

[版权声明:尊重原创,转载请保留出处:blog.csdn.net/shallnet,文章仅供学习交流,请勿用于商业用途] 如同linux应用一样,内核的共享资源也要防止并发,因为如果多个执行线程同时访问和操作数据有可能发生各个线程之间相互覆盖共享数据的情况. 在linux只是单一处理器的时候,只有在中断发生或内核请求重新调度执行另一个任务时,数据才可能会并发访问.但自从内核开始支持对称多处理器之后,内核代码可以同时运行在多个处理器上,如果此时不加保护,运行在多个处理器上的代码完全可能在同一时刻并

Linux内核同步机制--自旋锁【转】

本文转载自:http://www.cppblog.com/aaxron/archive/2013/04/12/199386.html 自旋锁与互斥锁有点类似,只是自旋锁不会引起调用者睡眠,如果自旋锁已经被别的执行单元保持,调用者就一直循环在那里看是否该自旋锁的保持者已经释放了锁,"自旋"一词就是因此而得名. 由于自旋锁使用者一般保持锁时间非常短,因此选择自旋而不是睡眠是非常必要的,自旋锁的效率远高于互斥锁. 信号量和读写信号量适合于保持时间较长的情况,它们会导致调用者睡眠,因此只能在进

Linux内核同步机制

http://blog.csdn.net/bullbat/article/details/7376424 Linux内核同步控制方法有很多,信号量.锁.原子量.RCU等等,不同的实现方法应用于不同的环境来提高操作系统效率.首先,看看我们最熟悉的两种机制——信号量.锁. 一.信号量 首先还是看看内核中是怎么实现的,内核中用struct semaphore数据结构表示信号量(<linux/semphone.h>中): [cpp] view plaincopyprint? struct semaph

深入分析Linux自旋锁

原创 2016-08-12 tekkamanninja CU技术社区 作者| tekkamanninja本文版权由tekkamanninja所有,如需转载,请联系本公众号获取授权!在复习休眠的过程中,我想验证自旋锁中不可休眠,所以编写了一个在自旋锁中休眠的模块.但是在我的ARMv7的单核CPU(TI的A8芯片)中测试的时候,不会锁死,并且自旋锁可以多次获取.实验现象和我对自旋锁和休眠的理解有出路.      我后来我将这个模块放到自己的PC上测试,成功锁死了,说明我的模块原理上没有问题.但是为什

Linux内核的同步机制---自旋锁

自旋锁的思考:http://bbs.chinaunix.net/thread-2333160-1-1.html 近期在看宋宝华的<设备驱动开发具体解释>第二版.看到自旋锁的部分,有些疑惑.所以来请教下大家. 以下是我參考一些网络上的资料得出的一些想法,不知正确与否.记录下来大家讨论下: (1) linux上的自旋锁有三种实现: 1. 在单cpu.不可抢占内核中,自旋锁为空操作. 2. 在单cpu,可抢占内核中,自旋锁实现为"禁止内核抢占".并不实现"自旋"

自旋锁使用规则

获得自旋锁和释放自旋锁有好几个版本,因此让读者知道在什么样的情况下使用什么版本的获得和释放锁的宏是非常必要的. 如果被保护的共享资源只在进程上下文访问和软中断(包括tasklet.timer)上下文访问,那么当在进程上下文访问共享资源时,可能被软中断打断,从而可能进入软中断上下文来对被保护的共享资源访问,因此对于这种情况,对共享资源的访问必须使用spin_lock_bh和spin_unlock_bh来保护.当然使用spin_lock_irq和spin_unlock_irq以及spin_lock_

自旋锁spinlock解析

1 基础概念 自旋锁与互斥锁有点类似,只是自旋锁不会引起调用者睡眠,如果自旋锁已经被别的执行单元保持,调用者就一直循环在那里看是否该自旋锁的保持者已经释放了锁,"自旋"一词就是因此而得名. 由于自旋锁使用者一般保持锁时间非常短,因此选择自旋而不是睡眠是非常必要的,自旋锁的效率远高于互斥锁. 信号量和读写信号量适合于保持时间较长的情况,它们会导致调用者睡眠,因此只能在进程上下文使用(_trylock的变种能够在中断上下文使用),而自旋锁适合于保持时间非常短的情况,它可以在任何上下文使用.

十天学Linux内核之第六天---调度和内核同步

原文:十天学Linux内核之第六天---调度和内核同步 心情大好,昨晚我们实验室老大和我们聊了好久,作为已经在实验室待了快两年的大三工科男来说,老师让我们不要成为那种技术狗,代码工,说多了都是泪啊,,不过我们的激情依旧不变,老师帮我们组好了队伍,着手参加明年的全国大赛,说起来我们学校历史上也就又一次拿国一的,去了一次人民大会堂领奖,可以说老大是对我们寄予厚望,以后我会专攻仪器仪表类的题目,激情不灭,梦想不息,不过最近一段时间还是会继续更新Linux内核,总之,继续加油~ Linux2.6版本中的