mysql磁盘IO%util 居高不下之RAID卡 BBU Learn Cycle周期

最近遇到一个奇怪的问题

收到短信报警说磁盘IO很高 复制延迟

iostat -x 1 10 信息如下:

QPS 如下:

负载很低  压力很低 这就很无解了。 只有一个MYSQL

其实这是个硬件问题 ,就是

MegaSAS RAID卡 BBU Learn Cycle周期

背景

最近遇到有些带MegaSAS RAID卡的服务器,在业务高峰时突然IO负载飚升得很高,IO性能急剧下降,查了日志及各种设置最后才发现是RAID卡的Cache写策略由WriteBack变成WriteThrough了。更深入的原因是BBU进入了Learn Cycle周期,自动把Cache策略改为WriteThrough.

WriteBack和WriteThrough

在开始之前,我需要提到两个词: WriteBack, WriteThrough

  1. WriteBack:进行写操作时,将数据写入RAID卡缓存,并直接返回,RAID卡控制器将在系统负载低或者Cache满了的情况下把数据写入硬盘。该设置会大大提升RAID卡写性能,绝大多数的情况下会降低系统IO负载。 数据的可靠性由RAID卡的BBU(Battery Backup Unit)进行保证。
  2. WriteThrough: 数据写操作不使用缓存,数据直接写入磁盘。RAID卡写性能下降,在大多数情况下该设置会造成系统IO负载上升。

MegaSAS RAID卡的Cache策略

对于LSI的MegaSAS RAID卡, 默认的Cache策略是: WriteBack, ReadAheadNone, Direct, No Write Cache if Bad BBU

如何查看RAID卡Cache策略

[email protected]:~ # ./MegaCli -LDInfo -Lall -aALL
Adapter 0 -- Virtual Drive Information:
Virtual Drive: 0 (Target Id: 0)
Name                :
RAID Level          : Primary-1, Secondary-0, RAID Level Qualifier-0
Size                : 557.861 GB
Mirror Data         : 557.861 GB
State               : Optimal
Strip Size          : 128 KB
Number Of Drives    : 2
Span Depth          : 1
Default Cache Policy: WriteBack, ReadAheadNone, Direct, No Write Cache if Bad BBU
Current Cache Policy: WriteBack, ReadAheadNone, Direct, No Write Cache if Bad BBU
Default Access Policy: Read/Write
Current Access Policy: Read/Write
Disk Cache Policy   : Disabled
Encryption Type     : None
Is VD Cached: No

Exit Code: 0x00
  • Default Cache Policy: 默认的缓存策略,针对每个RAID可以有不同的设置.
  • Current Cache Policy: 当前生效的缓存策略.

策略说明

  1. 第一段: WriteBack, WriteThrough
  2. 第二段: ReadAheadNone, ReadAdaptive, ReadAhead.
    • ReadAheadNone: 不开启预读。这是默认的设置
    • ReadAhead: 在读操作时,预先把后面顺序的数据加载入Cache,在顺序读取时,能提高性能,相反会降低随机读的性能。
    • ReadAdaptive: 自适应预读,当Cache memory和IO空闲时,采取顺序预读,平衡了连续读性能及随机读的性能,需要消耗一定的计算能力。
  3. 第三段: Direct, Cached.
    • Direct: Direct IO模式,读操作不缓存到cache memory中,数据将同时传输到cache中和应用,如果接下来要读取相同的数据块,则直接从Cache memory中获取. 这是默认的设置
    • Cached: Cached IO模式,所有读操作都会缓存到cache memory中。
  4. 第四段: Write Cache OK if Bad BBU, No Write Cache if Bad BBU
    • Write Cache OK if Bad BBU: 在BBU有问题时(如电池失效), 依旧使用Write Cache, 有一定的数据丢失风险.
    • No Write Cache if Bad BBU: 在BBU有问题时, 不使用Write Cache

策略自动切换的问题

由于MegaSAS RAID卡默认采用No Write Cache if Bad BBU的设置,将可能发生Write Cache策略变更的情况(由WriteBack变成WriteThrough),导致写性能下降,如果该自动变更发生在业务高峰且系统Io负载高的时候,可能会引发不可预测的问题,如卡机。以下原因将造成Write Cache策略的变更.

  1. RAID卡进入BBU Learn Cycle: 详细介绍见下面
  2. 检测到某些电池故障,如电池容量过低等,一般是电池老化带来的影响,IBM建议一年更换一次RAID卡电池
  3. 没有安装电池, 部分服务器购买时不带电池,导致被自动设置为WriteThrough

在BBU出问题时,如何临时强制启用Write Cache?

./MegaCli -LDSetProp CachedBadBBU -Lall -aALL
./MegaCli -LDSetProp WB -Lall -aALL
#以下命令可以把设置修改回去
./MegaCli -LDSetProp NOCachedBadBBU -Lall -aALL

BBU Learn Cycle

BBU由锂离子电池和电子控制电路组成。 锂离子电池的寿命取决于其老化程度,从出厂之后,无论它是否被充电及它的充放电次数多与少,锂离子电池的容量将慢慢的减少。这意味着一个老电池无法像新电池那么持久。 也就决定了BBU的相对充电状态(Relative State of Charge)不会等于绝对充电状态(Absolute State of Charge)。
为了记录电池的放电曲线,以便控制器了解电池的状态,例如最大和最小电压等,同时为了延长电池的寿命,默认会启用自动校准模式(AutoLearn Mode). 在learn cycle期间, raid卡控制器不会启用BBU直到它完成校准。整个过程可能需要高达12小时。这个过程中,会禁用WriteBack模式,以保证数据完整性,同时会造成性能的降低. 整个Learn Cycle分为三个步骤:

  1. 控制器把BBU电池充满电(该步骤可能是放电后充电或直接充电,如果电池刚好满电,则直接进入第二阶段)
  2. 开始校准, 对BBU电池执行放电
  3. 放电完成后,完成校准,并重新开始充电, 直接达到最大电量, 整个Learn Cycle才算完成 注意: 如果第二或第三阶段被中断,重新校准的任务会停止,而不会重新执行

IBM的服务器默认设置是30天执行一次Learn Cycle, 而DELL是90天。不推荐关闭Auto Learn模式,通过这个校准,能延长电池寿命,不作电池校准的Raid卡,电池寿命将从正常的2年降为8个月

查看当前的BBU Learn设置

[email protected]:~ # ./MegaCli -AdpBbuCmd -GetBbuProperties -aALL
BBU Properties for Adapter: 0

Auto Learn Period: 2592000 Sec
Next Learn time: 394618008 Sec
Learn Delay Interval:0 Hours
Auto-Learn Mode: Enabled
  • Auto Learn Period: 自动校准间隔, 单位秒,IBM的服务器默认设置是30天执行一次Learn Cycle, 而DELL是90天。 该设置无法修改。
  • Next Learn time: 下一次自动校准的时间,从2000年1月1日算起的秒数,这个设置无法修改,根据上一次自动校准的完成时间加上自动校准间隔计算得来。该时间转化为实际时间时,需要加上RAID卡时间的误差,部分RAID卡时间转成GMT时间后,依然是错误的。

实际时间计算方法,伪代码如下

RealTime = Next Learn time + ( 系统时间的Unixtime - RAID卡时间的Unixtime )
date -d ‘UTC 2000-01-01 + $RealTime secs‘
  • Learn Delay Interval: 自动校准启动后的延迟时间,单位小时,最大设置为7天。该设置只针对下次Learn Cycle,下次Learn Cycle完成后,该值将自动归零。
  • Auto-Learn Mode: 是否打开自动校准模式

查看当前BBU的状态

[email protected]:~ # MegaCli -AdpBbuCmd -GetBbuStatus -aALL
BBU status for Adapter: 0

BatteryType: iBBU
Voltage: 3837 mV
Current: -152 mA
Temperature: 23 C

Battery State     : Operational

BBU Firmware Status:

  Charging Status              : Discharging
  Voltage                                 : OK
  Temperature                             : OK
  Learn Cycle Requested                   : Yes
  Learn Cycle Active                      : Yes
  Learn Cycle Status                      : OK
  Learn Cycle Timeout                     : No
  I2c Errors Detected                     : No
  Battery Pack Missing                    : No
  Battery Replacement required            : No
  Remaining Capacity Low                  : No
  Periodic Learn Required                 : No
  Transparent Learn                       : No
  No space to cache offload               : No
  Pack is about to fail & should be replaced : No
  Cache Offload premium feature required  : No
  Module microcode update required        : No
...下略...
  1. Charging Status: 当前电池处于什么状态,有Charging, Discharging, None等值,分别代表电池充电,放电,及没有充放电操作的状态
  2. Learn Cycle Requested: Learn Cycle请求,当为Yes时,并且下面的Learn Cycle Active为No, 说明已经开始了Learn Cycle的第一阶段, 此时策略开始变为WriteThrough, 电池将经历一个放电后充电或者充电的过程
  3. Learn Cycle Active: 是否处于Learn Cycle的校准阶段,如果为Yes, 则进入了Learn Cycle的第二阶段,控制器开始校准电池.
  4. Battery Replacement required: 电池是否需要维修,如果为Yes, 请尽快更换电池5. Remaining Capacity Low: 剩余电容量低, 如果为Yes, 需要更换电池

如何强制启动Learn Cycle操作

强制执行自动校准的命令, 执行该命令后,会延迟几秒才会生效,策略会自动变为WriteThrough

[email protected]:~ # MegaCli -AdpBbuCmd -BbuLearn -aALL

通过该命令可以粗略的调整自动校准的下次执行时间,但无法100%准确:

  • 本次Learn Cycle的完成时间无法精确计算,这取决于电池的放电及充电速度.* 下次Battery的relearn任务可能会因为某些原因而推迟执行,例如当时电池正在充电,整个Relearn操作将推迟到充电完后之后。

如何查看当前的Cache策略是否发生变动

对比Default Cache Policy和Current Cache Policy是否不同,不同则是策略发生变动

[email protected]:~ # MegaCli -LDInfo -Lall -aALL

如何把Learn模式改为手动?

echo ‘autoLearnMode=1‘ >/tmp/megaraid.conf
MegaCli -AdpBbuCmd -SetBbuProperties -f /tmp/megaraid.conf -aAll
#1为Disable, 0为Enable, 从Disable切换到Enable时,Relearn操作会立刻执行
#确认是否生效
MegaCli -AdpBbuCmd -GetBbuProperties -aALL

建议

推荐的Cache策略: 使用No Write Cache if Bad BBU,在BBU出问题的情况下,牺牲性能来确保数据的安全性。
WriteBack, ReadAheadNone, Direct, No Write Cache if Bad BBU

以下有几种可选的方法

  • 在非业务高峰对BBU强制启动Learn Cycle,但下次自动的Learn Cycle会向后延迟5-6小时(视整个Learn Cycle所需时间而定)。每一次Learn Cycle执行完,下次Learn Cycle的执行时间会发生向后偏移的情况,推移时间由上一次整个Learn Cycle的耗时决定,一般下一次执行时间都会向后推移大约5小时(一次Learn Cycle的时间)。建议可以根据实际推迟效果定期在非业务高峰做一次手动Learn Cycle(一般是02:00~05:00)
  • 切换为手动模式,由crontab或者其他手动定期触发Learn Cycle,采用该方式需要根据不同硬件来决定Learn Cycle的间隔,采取错误的间隔将损耗电池的寿命。IBM的30天, DELL的机器为90天。
  • 检测下次Learn Cycle的时间,在即将进入Learn Cycle前,设置为Write Cached OK if Bad BBU, 使得Write Cache策略在Learn Cycle期间不发生变动,Learn Cycle过后,切换会原配置,这种方式在Learn Cycle期间(大约5小时左右)数据将不保险,如果遇到断电的情况,将发生数据丢失。* 检测下次Learn Cycle的时间,提前1~2天,在非业务高峰期提前触发learn cycle. 这种方法效果最好,也最方便,需要专门的脚本进行下次Learn Cycle时间的计算

推荐做法: 在保留Auto Learn模式的同时,定期通过Crontab对Raid卡执行强制Relearn的操作,检测下次Learn Cycle的时间,提前1~2天,在非业务高峰期提前触发learn cycle(一般是02:00~05:00)。

参考资料

    1. 对RAID及BBU的自问自答
    2. ServeRAID-M Series Battery Backup Unit (BBU) charge cycle behavior and cache modes - IBM System x
时间: 2024-11-05 06:17:27

mysql磁盘IO%util 居高不下之RAID卡 BBU Learn Cycle周期的相关文章

【转】MegaSAS RAID卡 BBU Learn Cycle周期的影响

http://ju.outofmemory.cn/entry/140 背景 最近遇到有些带MegaSAS RAID卡的服务器,在业务高峰时突然IO负载飚升得很高,IO性能急剧下降,查了日志及各种设置最后才发现是RAID卡的Cache写策略由WriteBack变成WriteThrough了.更深入的原因是BBU进入了Learn Cycle周期,自动把Cache策略改为WriteThrough. WriteBack和WriteThrough 在开始之前,我需要提到两个词: WriteBack, Wr

MySQL Hardware--RAID卡BBU Learn Cycle

RAID卡缓存策略 不同的RAID卡缓存策略对IO的性能影响较大,常见的策略有: 1.写操作策略,可设置为WriteBack或WriteThrough WriteBack:进行写操作时,将数据写入RAID卡缓存,并直接返回,RAID卡控制器将在系统负载低或者Cache满了的情况下把数据写入硬盘.该设置会大大提升RAID卡写性能,绝大多数的情况下会降低系统IO负载. 数据的可靠性由RAID卡的BBU(Battery Backup Unit)进行保证. WriteThrough: 数据写操作不使用缓

从监控数据做分析DELL服务器 RAID卡 BBU 放电情况

从2015-12-27 18:02 预警距离下次开始进入Leam_Cycle 时间<48小时 ,在2015-12-29 10:06便开始提示已经开始进入Leam_Cycle  其实我这监控得是第一阶段得状态,意思已经进入Leam_Cycle得第一阶段了 从进入第一阶段得时间到"距离下次开始进入Leam_Cycle 时间<48小时"这个告警得恢复时间来看,2015-12-29 10:06 - 2015-12-29 13:11  整个过程是三个小时完成,也就是从第一阶段到整个过

22.Mysql磁盘I/O

22.磁盘I/O问题磁盘IO是数据库性能瓶颈,一般优化是通过减少或延缓磁盘读写来减轻磁盘IO的压力及其对性能的影响.增强磁盘读写性能和吞吐量也是重要的优化手段. 22.1 使用磁盘阵列 RAID(Redundant Array of Inexpensive Disk)是指廉价磁盘冗余阵列,即磁盘阵列. RAID按照一定的策略将数据分布到若干物理磁盘上,增加数据存储的可靠性,提高数据的读写整体性能,实现了数据的并行读写. 22.1.1 常见RAID级别及其特性 根据数据分布和冗余方式,RAID分为

RAID卡简介

参考资料: https://blog.csdn.net/cymm_liu/article/details/8656154?spm=a2c4e.10696291.0.0.406119a4YLoXPK 0.RAID卡简介 RAID 卡有自己的CPU.Cache Memory,通过集成或借用主板上的 SCSI 控制器来管理硬盘,可以称之为一个智能化的设备. RAID 卡的分类: 一般根据集成的 SCSI 控制器来划分.如果没有集成 SCSI 控制器,而是借用主板上的 SCSI 控制器来管理硬盘,则为零

MySql语句性能问题定位--从sql语句到磁盘IO检查

写在前面:本文只针对IO导致MySql性能问题的定位,其他如CPU.MySql参数配置.程序自身等问题需要进一步补充. 背景:某条sql建表语句运行了15秒  :( Step1: 开启profiling SET profiling = 1; 关闭 SET profiling = off; 找到运行慢的sql语句ID show profiles; 查看sql语句CPU/IO等耗时具体的量化数据 show profile CPU,SWAPS,BLOCK IO,MEMORY,CONTEXT SWITC

MYSQL数据库服务磁盘IO高问题分析与优化

压力测试过程中,如果因为资源使用瓶颈等问题引发最直接性能问题是业务交易响应时间偏大,TPS逐渐降低等.而问题定位分析通常情况下,最优先排查的是监控服务器资源利用率,例如先用TOP 或者nmon等查看CPU.内存使用情况,然后在排查IO问题,例如网络IO.磁盘IO的问题. 如果是磁盘IO问题,一般问题是SQL语法问题.MYSQL参数配置问题.服务器自身硬件瓶颈导致IOPS吞吐率问题. 今天主要是讲解MYSQL 参数配置不合理导致在高并发下磁盘IO问题,而MYSQL整体监控优化方案后面会整理<如何轻

记一次性能测试:mysql占用磁盘IO过高 的解决过程

在一次性能测试时,发现mysql的cpu使用率不高,但是磁盘io很高, 一开始考虑是mysql的慢日志比较多,但是查看后发现慢日志并不多,而且只有一台mysql. 进入实例,查看sync_binlog变量 mysql> show variables like '%sync_binlog%' -> ; +---------------+-------+ | Variable_name | Value | +---------------+-------+ | sync_binlog | 1 |

MySQL数据库IO问题

--MySQL数据库IO问题 ----------------------2014/05/25 看http://www.mysqlperformanceblog.com 的时候,发现Percona Server已经发布到 5.1.58了,其中有一个重大的性能改进在flush 日志文件和doublewrite buffer的时候,使用fdatasync()代替fsync(),具体描述如下: fsync() has been replaced with fdatasync() to improve