leetcode:House Robber(动态规划dp1)

You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security system connected and it will automatically contact the police if two adjacent houses were broken into on the same night.

Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.

分析:题设给了一个抢劫的场景,其实质就是求数组中不相邻元素进行组合得到最大值的情况。数组中每个元素对应于各个房子可抢劫的金额数目。

自己的思路:    1、当数组为空(即没有可抢劫的房子)时,返回0

2、当数组元素个数为1时,这时最大抢劫金额(记为maxrob[1]) 即为nums[0].

3、当数组元素个数大于1时,我们运用动态规划(dp)的思想从下向上进行递推:maxrob[2]取值为前两个元素中的大者,maxrob[3]取值为元素1,3的组合同元素2相比的大者。我们容易得到递归方程:

maxrob[i]=a+nums[i-1];

a=(maxrob[i-2]>maxrob[i-3])?maxrob[i-2]:maxrob[i-3]

即组合当前元素nums[i-1]时,(考虑到不相邻的特征)需比较组合了其前面2位的元素nums[i-3]的最大组合maxrob[i-2]和组合了其前面3位的元素nums[i-4]的最大组合maxrob[i-3]

4、最后还需比较下组合了最后元素的情况和组合了倒数第二位元素的情况,选取较大者作为返回值即可。

代码如下:

class Solution {
public:
    int rob(vector<int>& nums) {
        int n=nums.size();
         if(nums.empty())
        {
            return 0;
        }
        long long maxrob[n];
        maxrob[1]=nums[0];
          if(n==1)
        {
            return maxrob[1];
        }
        else{
        maxrob[2]=(nums[0]>nums[1])?nums[0]:nums[1];
        maxrob[3]=(nums[0]+nums[2]>nums[1])?nums[0]+nums[2]:nums[1];
        for(int i=4; i <= n; i++){
            if(maxrob[i-2]>maxrob[i-3])
            {
                 maxrob[i]=maxrob[i-2]+nums[i-1];
            }
            else
            {
                maxrob[i]=maxrob[i-3]+nums[i-1];
            }
        }
        return (maxrob[n]>maxrob[n-1])?maxrob[n]:maxrob[n-1];
        }
    }
};

第一次在leetcode上做tag为动态规划的题目,思路还不够简洁,不过效果还是达到了的。

看看其他参考解法:  

一、

这是一个更简便的方法,也是自下向上进行推演(规则是:每次包含当前元素的最大值组合都是与包含前一元素的最大值组合相比较的)

class Solution {
public:
    int rob(vector<int>& nums) {
        int f1, f2, i, temp;
        f1 = 0;
        if(nums.size()){
            f2 = nums[0];
            f1 = (nums.size() > 1 && nums[0] < nums[1])? nums[1] : nums[0];
            for(i = 2; i < nums.size(); i++){
                temp = f1;
                f1 = (nums[i] + f2) > f1? (nums[i] + f2) : f1;
                f2 = temp;
            }
        }
        return f1;
    }
};

二、

A[i][0]表示第i次没有抢劫,A[i][1]表示第i次进行了抢劫

即A[i+1][0] = max(A[i][0], A[i][1]).. 那么rob当前的house,只能等于上次没有rob的+money[i+1], 则A[i+1][1] = A[i][0]+money[i+1].

实际上只需要两个变量保存结果就可以了,不需要用二维数组

class Solution {
public:
    int rob(vector<int> &nums) {
        int best0 = 0;   // 表示没有选择当前houses
        int best1 = 0;   // 表示选择了当前houses
        for(int i = 0; i < nums.size(); i++){
            int temp = best0;
            best0 = max(best0, best1); // 没有选择当前houses,那么它等于上次选择了或没选择的最大值
            best1 = temp + nums[i]; // 选择了当前houses,值只能等于上次没选择的+当前houses的money
        }
        return max(best0, best1);
    }
};

三、跟我的差不多,但是有些许改进。特别是nums[2] = nums[0]+nums[2]的处理。

class Solution {
public:
    int rob(vector<int> &nums) {
        if(nums.empty())
        {
            return 0;
        }
        int res = 0;
        int length = nums.size();
        if(1 == length)
        {
            return nums[0];
        }
        if(length >= 3)
        {
            nums[2] = nums[0]+nums[2];
        }
        for(int i = 3; i < length; i++)
        {
            if(nums[i-2]>nums[i-3])
            {
                nums[i] += nums[i-2];
            }
            else
            {
                nums[i] += nums[i-3];
            }

        }
        return (nums[length-2]>nums[length-1])? nums[length-2]:nums[length-1];

    }
};

  

  

 

时间: 2024-10-11 07:14:34

leetcode:House Robber(动态规划dp1)的相关文章

LeetCode总结 -- 一维动态规划篇

这篇文章的主题是动态规划, 主要介绍LeetCode中一维动态规划的题目, 列表如下: Climbing Stairs Decode Ways Unique Binary Search Trees Maximum Subarray Maximum Product Subarray Best Time to Buy and Sell Stock 在介绍上述具体题目之前, 我们先说说动态规划的通常思路. 动态规划是一种算法思路(注意这里不要和递归混淆, 事实上递归和迭代只是两种不同的实现方法, 并不

leetCode 198. House Robber | 动态规划

198. House Robber You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security system connected

LeetCode -- Word Break 动态规划,详细理解

Given a string s and a dictionary of words dict, determine if s can be segmented into a space-separated sequence of one or more dictionary words. For example, given s = "leetcode", dict = ["leet", "code"]. Return true because

LeetCode House Robber III

原题链接在这里:https://leetcode.com/problems/house-robber-iii/ 题目: The thief has found himself a new place for his thievery again. There is only one entrance to this area, called the "root." Besides the root, each house has one and only one parent hous

[LeetCode] House Robber 打家劫舍

You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security system connected and it will autom

[LeetCode] House Robber

You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security system connected and it will autom

[leetcode] House Robber python 解决方案

You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security system connected and it will autom

LeetCode -- House Robber II

Note: This is an extension of House Robber. After robbing those houses on that street, the thief has found himself a new place for his thievery so that he will not get too much attention. This time, all houses at this place are arranged in a circle. 

LeetCode——House Robber

Description: You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security system connected and