【算法数据结构Java实现】欧几里得算法

1.背景

欧几里得算法是一个求最大因子的快速算法。如果m,n存在最大因子k,假设m=x*n+r,那么m和n可以整出k的话,r也肯定可以整除k

因为定理:如果M>N,则M mod N<M/2 ,说明时间复杂度是O(log(n))

2.代码

package Algorithm_analysis;

public class Euclid {

	public static void main(String[] args){
		int m=63;
		int n=18;
		int remainder=0;
		while(n!=0){
		  remainder=m%n;
		  m=n;
		  n=remainder;
		}
		System.out.print(m);
	}
}

/********************************

* 本文来自博客  “李博Garvin“

* 转载请标明出处:http://blog.csdn.net/buptgshengod

******************************************/

时间: 2024-11-08 21:33:52

【算法数据结构Java实现】欧几里得算法的相关文章

菜鸟学算法----改进后的欧几里得算法

对于正整数 a和b  利用欧几里得算法可以得出 一个最大公因数 ,  改进后的算法满足  最大公因数 q=xa+yb   ; 那么我们如何求出 a和b呢 . 书上是这么写的 那么我们用代码把他实现出来, 向大家推荐一本书<The Art Of Computer.Programmer>   第一篇的数学部分   真心的枯燥 我选择的方式 是 适当的囫囵吞枣 对于这一样 ,但是对于其中讲述的算法 还是要仔细的去看滴 . 对于算法的分析  我直接上原书图 #include "stdafx.

排序算法之JAVA终极快速排序法

package net.qh.test.sort; import java.util.ArrayList; import java.util.Calendar; import java.util.List; /** * Created by Administrator on 2016/03/01. */ public class TermSimpleQuick { public int[] sort(int[] arr,int left,int right){ if ( arr == null

【算法数据结构Java实现】时间复杂度为O(n)的最大和序列

1.背景 最大序列和问题一直以来是一个比较经典的算法题,看到这个问题,有很多解题的办法.今天看到了一种时间复杂度只为O(n)的解题算法,在这里记录下. 思路很简单,比方说有P1,P2,P3,P4.....这样一个序列,我们从P1开始求和,比如说在P5时求和数小于零,就可以断定.第一种情况,最大序列在P1~P5之间,或者说在P6~Pn之间.因为如果P1+P2+......+P5的和小于零,那么它可以看成一个数,而且是序列第一个数,则任何一个最大序列都不会包含这个数. 2.代码实现 package

【算法数据结构Java实现】Java实现动态规划(背包问题)

1.背景 追随着buptwusuopu大神的脚步,最近在研习动态规划.动态规划应该叫一种解决问题的思想,记得又一次去某公司面试就被问到了这个. 多于动态规划的理解,大致是这样的,从空集合开始,每增加一个元素就求它的最优解,直到所有元素加进来,就得到了总的最优解. 比较典型的应用就是背包问题,有一个重量一定的包,有若干件物品,他们各自有不同的重量和价值,怎样背才能取得最大价值. 错误的理解:去价值/重量比最大的物品多装(之前我也是这么想的,但是在背包重量一定的情况下这么做并不合理,范例很容易想到)

【算法数据结构Java实现】递归的简单剖析及时间复杂度计算

1.理解 对于递归函数的理解,我觉得是比较重要的,因为很多大神能把递归函数用的惟妙惟肖,不光是他们的编程功力高深,更主要是能理解这个算法.比较直白的理解是,如果一个事件的逻辑可以表示成,f(x)=nf(x-1)+o(x)形式,那么就可以用递归的思路来实现. 编写递归逻辑的时候要知道如下法则: 1.要有基准 比如说,f(x)=f(x-1)+1,如果不加入基准,f(0)的值是多少,那么函数会无限执行下去,没有意义 2.不断推进 也就是f(x)=f(x-1)或是f(x)=f(x/n)之类的 当然每个递

【算法数据结构Java实现】折半查找

1.背景 以一个题目为例,一个整数x是一组按大小顺序排列好的数列中的一个数,我们要找到x在数列中的索引位置. 比如按从小到大排列的数列: -3,-2,0,4,5,7,12,64 我们要找到数字7的位置,如果是线性查找,时间复杂度是O(n),如果用折半查找的话,时间复杂度是O(log(n)),因为每次折半,计算量少一半,所以取对数. 2.代码 package Algorithm_analysis; public class Bisearch { static int[] array={-3,-2,

[算法]求满足要求的进制(辗转相除(欧几里得算法),求最大公约数gcd)

题目 3在十进制下满足若各位和能被3整除,则该数能被3整除. 5在十六进制下也满足此规律. 给定数字k,求多少进制(1e18进制范围内)下能满足此规律,找出一个即可,无则输出-1. 题解 写写画画能找到规律,即是求与k互质的数x,x进制下即能满足上述规律. 相关 求最大公约数:辗转相除法(又叫欧几里得算法) 欧几里德定理:gcd(a, b) = gcd(b , a mod b) ,对于正整数a.b. 其中a.b大小无所谓.当a值小于b值时,算法的下一次递归调用就能够将a和b的值交换过来. 代码

算法学习 - 欧几里得算法(辗转相除法)(c++实现)

欧几里得算法 欧几里得算法也叫辗转相除法,是求两个整数最大公约数的算法. 当然也可以求最小公倍数. 算法实现 其实算法的实现原理就是,有整数a b两个,每次求的一个数字r = a % b,然后把b放到a的位置,把r放到b的位置,递归调用. 就是gcd(a, b) { return gcd(b, a%b); }这个样子的. 结束条件是当 a%b == 0的时候停止. 最大公约数 // // main.cpp // Euclidean // // Created by Alps on 15/3/28

树结构的自定义及基本算法(Java数据结构学习笔记)

数据结构可以归类两大类型:线性结构与非线性结构,本文的内容关于非线性结构:树的基本定义及相关算法.关于树的一些基本概念定义可参考:维基百科 树的ADT模型: 根据树的定义,每个节点的后代均构成一棵树树,称为子树.因此从数据类型来讲,树.子树.树节点是等同地位,可将其看作为一个节点,用通类:Tree表示.如下图所示: 图:Tree ADT模型示意图 可采用"父亲-儿子-兄弟"模型来表示树的ADT.如图所示,除数据项外,分别用三个引用表示指向该节点的父亲,儿子,兄弟. 图:"父亲