hdu4734---F(x)(数位dp)

Problem Description

For a decimal number x with n digits (AnAn-1An-2 … A2A1), we define its weight as F(x) = An * 2n-1 + An-1 * 2n-2 + … + A2 * 2 + A1 * 1. Now you are given two numbers A and B, please calculate how many numbers are there between 0 and B, inclusive, whose weight is no more than F(A).

Input

The first line has a number T (T <= 10000) , indicating the number of test cases.

For each test case, there are two numbers A and B (0 <= A,B < 109)

Output

For every case,you should output “Case #t: ” at first, without quotes. The t is the case number starting from 1. Then output the answer.

Sample Input

3 0 100 1 10 5 100

Sample Output

Case #1: 1 Case #2: 2 Case #3: 13

Source

2013 ACM/ICPC Asia Regional Chengdu Online

Recommend

liuyiding | We have carefully selected several similar problems for you: 5177 5173 5169 5168 5165

设dp[i][j]表示i位数,F值小于等于j的数的个数

/*************************************************************************
    > File Name: hdu4734.cpp
    > Author: ALex
    > Mail: [email protected]
    > Created Time: 2015年02月26日 星期四 13时17分59秒
 ************************************************************************/

#include <map>
#include <set>
#include <queue>
#include <stack>
#include <vector>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;

const double pi = acos(-1);
const int inf = 0x3f3f3f3f;
const double eps = 1e-15;
typedef long long LL;
typedef pair <int, int> PLL;

int FA;
int dp[15][10000];
int bit[15];

int dfs (int cur, int e, int k, bool flag, bool zero)
{
    if (k < 0)
    {
        return 0;
    }
    if (cur == -1)
    {
        return 1;
    }
    if (!flag && ~dp[cur][k])
    {
        return dp[cur][k];
    }
    int ans = 0;
    int end = flag ? bit[cur] : 9;
    for (int i = 0; i <= end; ++i)
    {
        if (zero && !i)
        {
            ans += dfs (cur - 1, 0, k, flag && (i == end), 1);
        }
        else
        {
            ans += dfs (cur - 1, i, k - i * (1 << cur), flag && (i == end), 0);
        }
    }
    if (!flag)
    {
        dp[cur][k] = ans;
    }
    return ans;
}

int calc (int n)
{
    int cnt = 0;
    while (n)
    {
        bit[cnt++] = n % 10;
        n /= 10;
    }
    return dfs (cnt - 1, 0, FA, 1, 1);
}

int main ()
{
    int t;
    int icase = 1;
    scanf("%d", &t);
    memset (dp, -1, sizeof(dp));
    while (t--)
    {
        int cnt = 0;
        int a, b;
        scanf("%d%d", &a, &b);
        while (a)
        {
            bit[cnt++] = a % 10;
            a /= 10;
        }
        FA = 0;
        for (int i = 0; i < cnt; ++i)
        {
            FA += bit[i] * (1 << i);
        }
        printf("Case #%d: ", icase++);
        printf("%d\n", calc (b));
    }
    return 0;
}
时间: 2024-10-18 01:39:52

hdu4734---F(x)(数位dp)的相关文章

HDU 4734 F(x)(数位DP)

Description For a decimal number x with n digits (A nA n-1A n-2 ... A 2A 1), we define its weight as F(x) = A n * 2 n-1 + A n-1 * 2 n-2 + ... + A 2 * 2 + A1 * 1. Now you are given two numbers A and B, please calculate how many numbers are there betwe

hdu 4389 X mod f(x) 数位dp

题链:http://acm.hdu.edu.cn/showproblem.php?pid=4389 X mod f(x) Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2330    Accepted Submission(s): 919 Problem Description Here is a function f(x): int

HDU ACM 4734 F(x)-&gt;数位DP入门练习题

分析:数位DP的入门联系题,通过该題对数位DP有感觉了:dp[len][presum]代表长度为len权值不大于presum的数.记忆化搜索提高效率,除边界(因为边界上算出来的答案在其它数中可能是不完整的)外记录dp[len][presum]的值,下次发现以前计算过就直接return:dfs(len, presum, fg)表示求长度为len,不超过pre的全部符合条件的值.fg是控制边界的. #include<iostream> using namespace std; int dp[11]

HDU - 4734 F(x) (数位DP)

For a decimal number x with n digits (A nA n-1A n-2 ... A 2A 1), we define its weight as F(x) = A n * 2 n-1 + A n-1 * 2 n-2 + ... + A 2 * 2 + A 1 * 1. Now you are given two numbers A and B, please calculate how many numbers are there between 0 and B,

HDU X mod f(x) (数位DP)

题意:求一个区间内各位数字之和能被该数整除的个数. 析:数位DP,dp[i][j][k][l] 表示前 i 位和为 j,对 k 取模为 l,然后就好做了. 代码如下: #pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include

【hdu4734】F(x)-数位DP

题目描述: For a decimal number x with n digits (AnAn-1An-2 ... A2A1), we define its weight as F(x) = An * 2n-1 + An-1 * 2n-2 + ... + A2 * 2 + A1 * 1.  Now you are given two numbers A and B,  please calculate how many numbers are there between 0 and B, in

Kuangbin 带你飞 数位DP题解

以前一直不知道该咋搞这个比较好. 感觉推起来那个数字好麻烦.后来有一种比较好的写法就是直接的DFS写法.相应的ismax表示当前位是否有限制. 数位DP也是有一种类似模版的东西,不过需要好好理解.与其他模版不同. 主要还是状态的定义 模版就不整理了.直接上题. 另外这里有一道题是数位DP+自动机的放到自动机里做 HDU 2089 不要62 基本的数位DP可以用来理解DFS写法 #include <map> #include <set> #include <list> #

HDU4734——F(x)(数位DP)

dp[i][j]表示i位数权值不超过j的数的个数 注意点: dp[i][j]的值不用每次都初始化,因为它的值不受输入的影响,如果前面算过了就直接拿来用,没算过就拿来算并记录下来 <strong>#include<iostream> #include<cstring> #include<cstdio> #include<algorithm> #include<vector> #include<queue> #include&

【hdu4734】【F(x)】数位dp + 小小的总结一下

(https://www.pixiv.net/member_illust.php?mode=medium&illust_id=65608478) Problem Description For a decimal number x with n digits (AnAn-1An-2 ... A2A1), we define its weight as F(x) = An * 2n-1 + An-1 * 2n-2 + ... + A2 * 2 + A1 * 1. Now you are given

HDU4734 F(x) 题解 数位DP

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4734 题目大意: 对于一个 \(n\) 位十进制数 \(x\) (\(A_nA_{n-1}A_{n-2} \cdots A_2A_1\)),我们定义 \[F(x)=A_n \times 2^{n-1} + A_{n-1} \times 2^{n-2} + \cdots + A_2 \times 2 + A_1 \times 1\] 现在给你两个数 \(A\) 和 \(B\) ,请计算出区间 \([0