计算球面两点间距离实现Vincenty+Haversine

vincenty公式  精度很高能达到0.5毫米,但是很慢。

Haversine公式半正矢公式,比vincenty快,精度没有vincenty高,也长使用。

-------------------------------------------openlayers中实现的Vincenty----------------------------------------------------------

角度转弧度

/**
* Function: rad 
*
* Parameters:
* x - {Float}
*
* Returns:
* {Float}
*/
OpenLayers.Util.rad = function(x) {return x*Math.PI/180;};

弧度转角度

/**
* Function: deg
*
* Parameters:
* x - {Float}
*
* Returns:
* {Float}
*/
OpenLayers.Util.deg = function(x) {return x*180/Math.PI;};

a 长半轴

b短半轴

c 扁率

/**
* Property: VincentyConstants
* {Object} Constants for Vincenty functions.
*/
OpenLayers.Util.VincentyConstants = {
    a: 6378137,
    b: 6356752.3142,
    f: 1/298.257223563
};

  WGS-84 a = 6 378 137 m (±2 m) b ≈ 6 356 752.314245 m f ≈ 1 / 298.257223563
  GRS-80 a = 6 378 137 m b ≈ 6 356 752.314140 m f = 1 / 298.257222101
  Airy 1830 a = 6 377 563.396 m b = 6 356 256.910 m f ≈ 1 / 299.3249646
  Internat’l 1924 a = 6 378 388 m b ≈ 6 356 911.946 m f = 1 / 297
  Clarke mod.1880 a = 6 378 249.145 m b ≈ 6 356 514.86955 m f = 1 / 293.465
  GRS-67 a = 6 378 160 m b ≈ 6 356 774.719 m f = 1 / 298.247167

给定两个地理坐标(经纬度)返回km距离

/**
* APIFunction: distVincenty
* Given two objects representing points with geographic coordinates, this
*     calculates the distance between those points on the surface of an
*     ellipsoid.
*
* Parameters:
* p1 - {<OpenLayers.LonLat>} (or any object with both .lat, .lon properties)
* p2 - {<OpenLayers.LonLat>} (or any object with both .lat, .lon properties)
*
* Returns:
* {Float} The distance (in km) between the two input points as measured on an
*     ellipsoid.  Note that the input point objects must be in geographic
*     coordinates (decimal degrees) and the return distance is in kilometers.
*/
OpenLayers.Util.distVincenty = function(p1, p2) {
    var ct = OpenLayers.Util.VincentyConstants;
    var a = ct.a, b = ct.b, f = ct.f;

var L = OpenLayers.Util.rad(p2.lon - p1.lon);
    var U1 = Math.atan((1-f) * Math.tan(OpenLayers.Util.rad(p1.lat)));
    var U2 = Math.atan((1-f) * Math.tan(OpenLayers.Util.rad(p2.lat)));
    var sinU1 = Math.sin(U1), cosU1 = Math.cos(U1);
    var sinU2 = Math.sin(U2), cosU2 = Math.cos(U2);
    var lambda = L, lambdaP = 2*Math.PI;
    var iterLimit = 20;
    while (Math.abs(lambda-lambdaP) > 1e-12 && --iterLimit>0) {
        var sinLambda = Math.sin(lambda), cosLambda = Math.cos(lambda);
        var sinSigma = Math.sqrt((cosU2*sinLambda) * (cosU2*sinLambda) +
        (cosU1*sinU2-sinU1*cosU2*cosLambda) * (cosU1*sinU2-sinU1*cosU2*cosLambda));
        if (sinSigma==0) {
            return 0;  // co-incident points
        }
        var cosSigma = sinU1*sinU2 + cosU1*cosU2*cosLambda;
        var sigma = Math.atan2(sinSigma, cosSigma);
        var alpha = Math.asin(cosU1 * cosU2 * sinLambda / sinSigma);
        var cosSqAlpha = Math.cos(alpha) * Math.cos(alpha);
        var cos2SigmaM = cosSigma - 2*sinU1*sinU2/cosSqAlpha;
        var C = f/16*cosSqAlpha*(4+f*(4-3*cosSqAlpha));
        lambdaP = lambda;
        lambda = L + (1-C) * f * Math.sin(alpha) *
        (sigma + C*sinSigma*(cos2SigmaM+C*cosSigma*(-1+2*cos2SigmaM*cos2SigmaM)));
    }
    if (iterLimit==0) {
        return NaN;  // formula failed to converge
    }
    var uSq = cosSqAlpha * (a*a - b*b) / (b*b);
    var A = 1 + uSq/16384*(4096+uSq*(-768+uSq*(320-175*uSq)));
    var B = uSq/1024 * (256+uSq*(-128+uSq*(74-47*uSq)));
    var deltaSigma = B*sinSigma*(cos2SigmaM+B/4*(cosSigma*(-1+2*cos2SigmaM*cos2SigmaM)-
        B/6*cos2SigmaM*(-3+4*sinSigma*sinSigma)*(-3+4*cos2SigmaM*cos2SigmaM)));
    var s = b*A*(sigma-deltaSigma);
    var d = s.toFixed(3)/1000; // round to 1mm precision
    return d;
};

-------------------------------------------end----------------------------------------------------------

Haversine公式实现

function toRadians(degree) {

return degree * Math.PI / 180;

}

function distance(latitude1, longitude1, latitude2, longitude2) {

// R is the radius of the earth in kilometers

var R = 6371;

var deltaLatitude = toRadians(latitude2-latitude1);

var deltaLongitude = toRadians(longitude2-longitude1);

latitude1 =toRadians(latitude1);

latitude2 =toRadians(latitude2);

var a = Math.sin(deltaLatitude/2) *

Math.sin(deltaLatitude/2) +

Math.cos(latitude1) *

Math.cos(latitude2) *

Math.sin(deltaLongitude/2) *

Math.sin(deltaLongitude/2);

var c = 2 * Math.atan2(Math.sqrt(a),

Math.sqrt(1-a));

var d = R * c;

return d;

}

时间: 2024-08-10 19:14:13

计算球面两点间距离实现Vincenty+Haversine的相关文章

计算球面上经纬度坐标方法比较

计算球面上的两点(坐标为经纬度)之间的距离可以直接通过公式计算得到,也可以先将经纬度坐标转化为墨卡托投影坐标来,然后用平面中两点之间的距离公式来计算. 在网上找了一些代码,然后简单进行了测试,发现前者精度更高: 资料来源:http://0414.iteye.com/blog/2039199 http://blog.sina.com.cn/s/blog_8ab3b2cf0100xd69.html 1 package com.suncreate.spatialquery.web.utils; 2 3

mysql函数计算地表两点间距离

DELIMITER $$ CREATE FUNCTION `test`.`getDistance`(LatBegin FLOAT(10,4), LngBegin FLOAT(10,4), LatEnd FLOAT(10,4), LngEnd FLOAT(10,4))RETURNS FLOAT(10,4) BEGIN DECLARE Distance FLOAT(10,4) DEFAULT 0.0000; DECLARE EARTH_RADIUS FLOAT(10,4) DEFAULT 0.000

球面三角的相关计算

已知3个球心角(A0.B0.C0)及球体半径R,计算:球面三角的角度(A.B.C).球面三角的面积.以及球角锥的体积 (涉及角度均为弧度制) 1.计算球面三角形的边长a.b.c: a = A0*R; (弧长=弧度*球半径) b = B0*R; c = C0*R; 2.计算球面角: (1)方法一:基于余弦定理求解: 故,A = acos( (cosa-cosbcosc)/(sinbsinc)),同理可计算球面角B和C (2)方法二,也可有正弦公式求得 3.计算球面超(spherical exces

地理空间距离计算及优化(根据两个点经纬度计算距离)

1.地理空间距离计算面临的挑战 打开美团app,不管是筛选团购还是筛选商家,默认的排序项都是"离我最近"或者"智能排序"(如下图所示). 不管是"离我最近"还是"智能排序",都涉及到计算用户位置与各个团购单子或者商家的距离(注:在智能排序中距离作为一个重要的参数参与排序打分).以筛选商家为例,北京地区有5~6w个POI(本文将商家称之为POI),当用户进入商家页,请求北京全城+所有品类+离我最近/智能排序时,我们筛选服务需要计

根据2个经纬度点,计算这2个经纬度点之间的距离

原文  http://www.cnblogs.com/softfair/p/distance_of_two_latitude_and_longitude_points.html 根据 2 个经纬度点,计算这 2 个经纬度点之间的距离 球面上任意两点之间的距离计算公式可以参考维基百科上的下述文章. Great-circle distance Haversine formula 值得一提的是,维基百科推荐使用Haversine公式,理由是Great-circle distance公式用到了大量余弦函

地理空间距离计算及优化(依据两个点经纬度计算距离)

1.地理空间距离计算面临的挑战 打开美团app.无论是筛选团购还是筛选商家,默认的排序项都是"离我近期"或者"智能排序"(例如以下图所看到的). 无论是"离我近期"还是"智能排序".都涉及到计算用户位置与各个团购单子或者商家的距离(注:在智能排序中距离作为一个重要的參数參与排序打分).以筛选商家为例.北京地区有5~6w个POI(本文将商家称之为POI),当用户进入商家页,请求北京全城+全部品类+离我近期/智能排序时.我们筛选服

js根据经纬度计算两点距离

根据两点经纬度计算距离 这些经纬线是怎样定出来的呢?地球是在不停地绕地轴旋转(地轴是一根通过地球南北两极和地球中心的假想线),在地球中腰画一个与地轴垂直的大圆圈,使圈上的每一点都和南北两极的距离相等,这个圆圈就叫作“赤道”.在赤道的南北两边,画出许多和赤道平行的圆圈,就是“纬圈”:构成这些圆圈的线段,叫做纬线.我们把赤道定为纬度零度,向南向北各为90度,在赤道以南的叫南纬,在赤道以北的叫北纬.北极就是北纬90度,南极就是南纬90度.纬度的高低也标志着气候的冷热,如赤道和低纬度地地区无冬,两极和高

利用JS实现的根据经纬度计算地球上两点之间的距离

最近用到了根据经纬度计算地球表面两点间距离的公式,然后就用JS实现了一下. 计算地球表面两点间的距离大概有两种办法. 第一种是默认地球是一个光滑的球面,然后计算任意两点间的距离,这个距离叫做大圆距离(The Great Circle Distance). 公式如下: 使用JS来实现为: var EARTH_RADIUS = 6378137.0;    //单位M    var PI = Math.PI;        function getRad(d){        return d*PI/

点至直线的距离和垂足点计算

//点到直线的垂足点 public static Coordinate getFootPoint(Coordinate point, Coordinate pnt1, Coordinate pnt2) { double A=pnt2.y-pnt1.y; //y2-y1 double B=pnt1.x-pnt2.x; //x1-x2; double C=pnt2.x*pnt1.y-pnt1.x*pnt2.y; //x2*y1-x1*y2 if (A * A + B * B < 1e-13) { r