【套题】Codeforces#304(div2)

A. Soldier and Bananas

  • 题意:第一个香蕉要k刀,第二个2k刀,第i个要i?k刀。现有n刀,问可以买几个香蕉。
  • 题解:等差数列求和,我们知道只需要找到p使得

    ∑i=1pi?k≤n<∑i=1p+1i?k

    即可,移项就可以得到公式,同时上述求和公式是单调递增的,因此也可以二分答案。

  • 参考代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

typedef long long ll;
inline ll foo(int x, int k) {
    return (((1LL + x) * x) >> 1) * k;
}

ll gao(ll k, ll n, ll w) {
    return max(foo(w, k) - n, 0LL);
}

int main() {
    int k, n, w;
    while (~scanf(" %d %d %d", &k, &n, &w)) {
        printf("%I64d\n", gao(k, n, w));
    }
    return 0;
}

B. Soldier and Badges

  • 题意:给n个数,1≤ai≤n,将一个数从a变大成b需要消耗b?a个金币,问如何把这堆数变成两两不等的,顺序任意。
  • 题解:直接扫一遍,对一个数a,向上找一个之前没有占用的位置填充即可。
  • 参考代码:
#include <cstdio>
#include <cstring>
#include <vector>
#include <iostream>
#include <algorithm>

using namespace std;

const int MAX = 6007;
bool vis[MAX];
int foo(int x) {
    int res = 0;
    while (vis[x]) {
        ++x;
        ++res;
    }
    vis[x] = true;
    return res;
}

int main() {
    int n;
    while (~scanf(" %d", &n)) {
        memset(vis, false, sizeof(vis));
        int a, sum = 0;
        for (int i = 1; i <= n; ++i) {
            scanf(" %d", &a);
            sum += foo(a);
        }
        printf("%d\n", sum);
    }
    return 0;
}

C. Soldier and Cards

  • 题意:两堆牌,每次取最上面的两张比较,如果更大,则吃掉另一张,并将其放到底部,然后将自己这张也放到底部。一张牌都没有时为输。问游戏能不能终止,如果能,输出谁胜利以及需要进行几轮。
  • 题解:考虑到总牌数并不多(k1+k2=n, 2≤n≤10),状态数最多只有A1010?C19这么多,实际上要少得多,因此直接状态压缩模拟即可。
  • 参考代码:
#include <cstdio>
#include <cstring>
#include <set>
#include <map>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;

struct State {
    vector<int> left;
    vector<int> right;
    bool operator==(const State& B)const {
        if (left.size() != B.left.size()
            || right.size() != B.right.size()) {
            return false;
        }
        for (int i = 0; i < left.size(); ++i) {
            if (left[i] != B.left[i]
                || right[i] != B.right[i]) {
                return false;
            }
        }
        return true;
    }
    bool operator<(const State& B)const {
        if (left.size() != B.left.size()) {
            return left.size() < B.left.size();
        }
        for (int i = 0; i < left.size(); ++i) {
            if (left[i] != B.left[i]) {
                return left[i] < B.left[i];
            }
        }
        if (right.size() != B.right.size()) {
            return right.size() < B.right.size();
        }
        for (int i = 0; i < right.size(); ++i) {
            if (right[i] != B.right[i]) {
                return right[i] < B.right[i];
            }
        }
        return false;
    }
    void print() {
        printf("{\n\t%d", left.size());
        for (int i = 0; i < left.size(); ++i) {
            printf(" %d", left[i]);
        }
        printf("\n\t%d", right.size());
        for (int i = 0; i < right.size(); ++i) {
            printf(" %d", right[i]);
        }
        puts("\n}\n");
    }
};

map<State, bool> M;
pair<int, int> gao(State& thus) {
    M.clear();
    for (int i = 0; ; ++i) {
        //puts("----------------------");
        //thus.print();
        //getchar();
        if (thus.left.empty()) {
            return make_pair(2, i);
        } else if (thus.right.empty()) {
            return make_pair(1, i);
        } else if (M.find(thus) != M.end()) {
            return make_pair(-1, i);
        } else {
            M.insert(make_pair(thus, true));
            //generate the next thus
            if (thus.left[0] > thus.right[0]) {
                thus.left.push_back(thus.right[0]);
                thus.left.push_back(thus.left[0]);
            } else {
                thus.right.push_back(thus.left[0]);
                thus.right.push_back(thus.right[0]);
            }
            thus.left.erase(thus.left.begin());
            thus.right.erase(thus.right.begin());
        }
    }
}

int main() {
    int n;
    State my;

    while (~scanf(" %d", &n)) {
        int m, a;
        scanf(" %d", &m);
        my.left.clear();
        while (m--) {
            scanf(" %d", &a);
            my.left.push_back(a);
        }
        scanf(" %d", &m);
        my.right.clear();
        while (m--) {
            scanf(" %d", &a);
            my.right.push_back(a);
        }
        pair<int, int> res = gao(my);
        if (res.first == -1) {
            puts("-1");
        } else {
            printf("%d %d\n", res.second, res.first);
        }
    }

    return 0;
}

D. Soldier and Number Game

  • 题意:问a!b!分解质因数后又多少个质因子。如28=22?7,有3个质因子,注意,这里质因子2的指数为2,要算成2个。
  • 题解:记Ω(n)为n的质因子个数,则Ω(1)=0。根据分解质因数后的形式,设:

    n=x?y

    则显然有:

    Ω(n)=Ω(x)+Ω(y)

    Ω(n)有这种性质,我们就称Ω(n)是加性函数。同时可以知道:

    Ω(x)=Ω(n)?Ω(y)

    于是得解:

    (1) 首先用筛法筛出质数,求出所有质数的Ω函数值为1(记为prime[x]=1),并且对任意一个合数y得出其一个质因子p,记为flag[y],即flag[y]=p。

    (2) 然后对1≤x≤5000000,我们线性地扫一遍:

    prime[x]=prime[x/flag[x]]+prime[flag[x]]

    其中prime[x]=Ω(x)。

    (3) 由于

    a!b!=∑ai=1Ω(i)∑bi=1Ω(i)

    分子和分母都是前缀和的形式,令:

    dp[x]=∑j=1xΩ(j)

    就可以得到答案:

    ans(a,b)=dp[a]?dp[b]

  • 参考代码:
#include <bits/stdc++.h>
using namespace std;

const int MAX = 5000007;
int flag[MAX] = {0};
int prime[MAX] = {0}; //prime[i]: i的质因数的个数
int dp[MAX] = {0}; //前缀和

void init() {
    int i;
    for (i = 2; i <= MAX / i; ++i) {
        if (flag[i] == 0) {
            flag[i] = i;
            prime[i] = 1;
            //printf("flag[%d] = %d\n", i, flag[i]);
            //getchar();
            for (int j = i * i; j < MAX; j += i) {
                if (flag[j] == 0) {
                    flag[j] = i;
                    //printf("flag[%d] = %d\n", j, i);
                    //getchar();
                }
            }
        }
    }
    for (; i < MAX; ++i) {
        if (flag[i] == 0) {
            flag[i] = i;
            prime[i] = 1;
        }
    }

    for (i = 2; i < MAX; ++i) {
        prime[i] = prime[i / flag[i]] + prime[flag[i]];
    }

    for (i = 1; i < MAX; ++i) {
        dp[i] = dp[i - 1] + prime[i];
    }
    //for (int i = 1; i < 10; ++i) {
    //  printf("prime[%d] = %d, dp[%d] = %d\n", i, prime[i], i, dp[i]);
    //}
}

int main() {
    init();

    int T, a, b;
    scanf(" %d", &T);
    while (T--) {
        scanf(" %d %d", &a, &b);
        printf("%d\n", dp[a] - dp[b]);
    }
    return 0;
}

E. Soldier and Traveling

  • 题意:有n个城市,m条道路(无向),城市里有一些士兵,问在每个士兵只能走一次的情况下,能不能把原来的各城市的士兵数(a1,a2,...an)变成(b1,b2,...,bn)。如果能给出任一个调整方案。
  • 题解:网络流。建图时,增加源点source,汇点dest,每个城市作为一个点,同时拆点为i何i+n,如果有道路(x,y),那么建边x→n+y 和 y→n+x,容量分别为ax和ay。同时,源点和点i1≤i≤n之间建边,容量为ax;汇点和点in+1≤i≤2?n之间建边,容量为bi。得到source到dest的最大流flow后,判断flow是否等于所有点的士兵总和∑ni=1ai即可。当然,也应该要判断∑ni=1ai和∑ni=1bi是否相等。
  • 参考代码:
#include <bits/stdc++.h>
using namespace std;

const int INF = 0xfffffff;
const int MAX = 107 << 1;
struct Edge {
    int to;
    int flow;
    int cap;
    int rev; //mapto Edge G[to][rev]
};
vector<Edge> G[MAX];
int level[MAX];
//store answer
int ans[MAX][MAX];
int n, m;
int a[MAX], b[MAX];

void addEdge(int from, int to, int cap) {
    G[from].push_back((struct Edge){to, 0, cap, G[to].size()});
    G[to].push_back((struct Edge){from, cap, cap, G[from].size() - 1});
}

bool bfs(int s, int t) {
    memset(level, -1, sizeof(level));
    level[s] = 0;
    queue<int> Q;
    Q.push(s);
    while (!Q.empty()) {
        int p = Q.front();
        Q.pop();

        for (vector<Edge>::iterator it = G[p].begin(); it != G[p].end(); ++it) {
            if (level[it->to] == -1 && it->flow < it->cap) {
                Q.push(it->to);
                level[it->to] = level[p] + 1;
                if (it->to == t) {
                    return true;
                }
            }
        }
    }
    //printf("No Road.\n");
    return false;
}

int dfs(int s, int t, int flow) {
    if (s == t) {
        return flow;
    }
    int sum = 0, tmp;
    for (vector<Edge>::iterator it = G[s].begin(); it != G[s].end(); ++it) {
        if (level[it->to] == level[s] + 1 && it->flow < it->cap) {
            tmp = dfs(it->to, t, min(flow, it->cap - it->flow));
            //printf("gao(%d, %d), fetch %d\n", s, it->to, tmp);
            it->flow += tmp;
            G[it->to][it->rev].flow -= tmp;
            sum += tmp;
            flow -= tmp;
        }
    }
    return sum;
}

int dinic(int s, int t) {
    int sum = 0;
    while (bfs(s, t)) {
        sum += dfs(s, t, INF);
    }
    return sum;
}

inline int ex(int x) {
    return (x >= 1 && x <= n) ? x : x - n;
}

int main() {
    while (~scanf(" %d %d", &n, &m)) {
        for (int i = 0; i < MAX; ++i) {
            G[i].clear();
        }

        int source = 0, dest = n << 1 | 1;
        int sum1 = 0, sum2 = 0;
        for (int i = 1; i <= n; ++i) {
            scanf(" %d", a + i);
            sum1 += a[i];
            addEdge(source, i, a[i]);
            addEdge(i, i + n, a[i]);
        }
        for (int i = 1; i <= n; ++i) {
            scanf(" %d", b + i);
            sum2 += b[i];
            addEdge(i + n, dest, b[i]);
        }

        int x, y;
        for (int i = 1; i <= m; ++i) {
            scanf(" %d %d", &x, &y);
            //match point <x, n + y>
            addEdge(x, n + y, a[x]);
            addEdge(y, n + x, a[y]);
        }

        int flow = dinic(source, dest);
        //printf("flow = %d\n", flow);

        if (sum1 != sum2 || flow != sum2) {
            puts("NO");
        } else {
            puts("YES");
            memset(ans, 0, sizeof(ans));
            for (int i = 1; i <= n; ++i) {
                ans[i][i] = a[i];
            }
            /*
            for (int i = source; i <= dest; ++i) {
                for (int j = 0; j < G[i].size(); ++j) {
                    printf("(%d, %d) -> %d\n", i, G[i][j].to, G[i][j].flow);
                }
            }
            puts("----");
            */
            for (int i = 1; i <= n; ++i) {
                for (int j = 0; j < G[i].size(); ++j) {
                    Edge& e = G[i][j];
                    if (e.flow > 0) {
                        ans[i][i] -= e.flow;
                        ans[i][e.to - n] += e.flow;
                    }
                }
            }
            for (int i = 1; i <= n; ++i) {
                for (int j = 1; j <= n; ++j) {
                    printf("%d%c", ans[i][j], j == n ? ‘\n‘ : ‘ ‘);
                }
            }
        }
    }

    return 0;
}
时间: 2024-10-29 22:38:07

【套题】Codeforces#304(div2)的相关文章

codeforces #304 DIV2

A题:http://codeforces.com/problemset/problem/546/A 没什么好说的,SB题 1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 #include<string> 5 #include<cmath> 6 #include<algorithm> 7 #include<cctype> 8 #include<

套题 codeforces 360

A题:Opponents 直接模拟 #include <bits/stdc++.h> using namespace std; char ch[200]; int main() { int n,k; while(~scanf("%d%d",&n,&k)) { int p=0,sta=1,first=1,ans; for(int i=0;i<k;i++) { sta=1; scanf("%s",ch); for(int i=0;i&l

Educational Codeforces Round 15 套题

这套题最后一题不会,然后先放一下,最后一题应该是大数据结构题 A:求连续最长严格递增的的串,O(n)简单dp #include <cstdio> #include <cstdlib> #include <cstring> #include <cmath> #include <iostream> #include <algorithm> #include <queue> #include <vector> usi

Codeforces 583 DIV2 Robot&#39;s Task 贪心

原题链接:http://codeforces.com/problemset/problem/583/B 题意: 就..要打开一个电脑,必须至少先打开其他若干电脑,每次转向有个花费,让你设计一个序列,使得总花费最小. 题解: 就傻傻的走就好..从左走到右,再走回来,更新序列和答案就好. 代码: #include<iostream> #include<cstring> #include<algorithm> #include<cstdio> #define MA

Codeforces #245(div2)

A:A. Points and Segments (easy) 题目看了n久,开始觉得尼玛这是div2的题目么,题目还标明了easy.. 意思是给你一n个点,m个区间,在n个点上放蓝球或者红球,然后让你找一种选择方案使得m个区间内的蓝球和红球数量之差不超过1. 开始想过用dfs,不过这只是div2的A题而已.. 然后想了下,直接输出010101序列不就可以么. 交了一发,发现要先排个序,再输出就可以了. AC代码: #include<iostream> #include<cstdio&g

codeforces#327 div2

codeforces#327 div2 这场状态不好有点可惜,题目都不难,而且很好.. A题:水题. #include<bits/stdc++.h> #define REP(i,a,b) for(int i=a;i<=b;i++) #define MS0(a) memset(a,0,sizeof(a)) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 using namespace std; typedef lo

Codeforces 258 Div2

A题,n*m根木棍,相交放置,轮流取走相交的两根,最后谁不能行动,则输掉. min(n,m)&1 为1则先取者赢. B题,给定一个长度为n,且各不相同的数组,问能否通过交换连续一段L....R使得变成单调递增. 如果一开始就是递增的,那么直接输出L...R就是1 1,交换一个就行了:否则判断中间是否有且一段单调递减,且两端交换后使得数组递增. 代码: 1 //Template updates date: 20140718 2 #include <iostream> 3 #include

2017年8月14日套题记录 | 普及组

写在前面 今天登洛谷发现离Noip剩下88天了??(虽然看起有点久),然后觉得似乎水了一个暑假什么也没做(虽然学了点数据结构和一些奇奇Gaygay的东西),于是打开题库发现去年Long Happy的集训套题我似乎没有提交过,那就一天一套题,顺便码个题解+心得(雾? T2.传作业 题目描述 某十三同学一日上学迟到,此时已经开始上早自习了,所以他只好请同学帮忙把作业传到组长那里.由于刚开学不久,某十三同学还没来得及认识所有同学,所以传作业时只好找熟悉的同学.已知某十三与组长之间有N个他熟悉的同学,并

应试教育:你是在“套题”还是在“解决问题”?

?为什么当初会采用"背题型"的方式? ?"背题型"的局限性在哪? ?建构"知识体系"优势在哪? ?"题海战术"的认知错误 ?学习和考试的本质 声明:此文纯属个人学习方法总结. 1.为什么当初会采用"背题型"的方式? 以前上了高中,由于身边学霸太多,为了急于缩短与他们之间的天壤之别,总想着调整自己的学习方法. 本来自己就没什么学习方法,加上老师布置下做不完的题目,况且时常听到"题海战术"的