题目:
Given a sequence of integers S = {S1, S2, . . . , Sn}, you should determine what is the value of the
maximum positive product involving consecutive terms of S. If you cannot find a positive sequence,
you should consider 0 as the value of the maximum product.
Input
Each test case starts with 1 ≤ N ≤ 18, the number of elements in a sequence. Each element Si
is
an integer such that −10 ≤ Si ≤ 10. Next line will have N integers, representing the value of each
element in the sequence. There is a blank line after each test case. The input is terminated by end of
file (EOF).
Output
For each test case you must print the message: ‘Case #M: The maximum product is P.’, where
M is the number of the test case, starting from 1, and P is the value of the maximum product. After
each test case you must print a blank line.
Sample Input
3
2 4 -3
5
2 5 -1 2 -1
Sample Output
Case #1: The maximum product is 8.
Case #2: The maximum product is 20.
题目大意:输入个长度为n的序列,要你找到乘积最大的连续序列的积。(如果乘积小于0,就相当于乘积为0)
题目思路:既然要找连续的序列,给一个循环枚举起点,一个循环枚举终点,一个循环它起点到终点的元素乘起来,给个MAX变量赋值为0(因为乘积小于0点都会被赋值为0)。
X每个乘积都与MAX比较,比MAX大的,就把它赋值给MAX。循环完毕,输出MAX的值就行了。(还要注意输出案例时要连着输出2个换行)
代码:
1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 using namespace std; 5 const int maxn=18+5; 6 int main() 7 { 8 int n,i,a[maxn],j,k,p=0; 9 long int sum,max; 10 while(cin>>n&&n) 11 { 12 for(i=0;i<n;i++) 13 cin>>a[i]; 14 max=0; 15 for(i=0;i<n;i++) 16 { 17 for(j=i;j<n;j++) 18 { 19 sum=1; 20 for(k=i;k<=j;k++) 21 { 22 sum*=a[k]; 23 } 24 if(sum<0) 25 sum=0; 26 if(sum>max) 27 max=sum; 28 } 29 } 30 printf("Case #%d: The maximum product is %lld.\n\n",++p,max); 31 32 } 33 return 0; 34 }