android线程与线程池-----线程池(二)《android开发艺术与探索》

android 中的线程池

线程池的优点:

1 重用线程池中的线程,避免了线程的创建和销毁带来的性能开销
2 能有效的控制最大并发数,避免大量线程之间因为喜欢抢资源而导致阻塞
3 能够对线程进行简单的管理,提供定时执行以及指定间隔时间循环执行等

android 中的线程池源自java 中的Executor,Executor是一个接口,正真的实现是ThreadPoolExecutor。
ThreadPoolExecutor 提供参数配置线程池。

下面是一个常用的构造方法:

    public ThreadPoolExecutor(int corePoolSize,
                                 int maximumPoolSize,
                                 long keepAliveTime,
                                 TimeUnit unit,
                                 BlockingQueue<Runnable> workQueue,
                                 ThreadFactory threadFactory) {
           this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
                threadFactory, defaultHandler);  

corePoolSize线程池的核心线程数  
maximumPoolSize线程池中能容纳的最大线程数,当活动线程达到这个数之后,后续的任务会被阻塞
keepAliveTime 非核心线程闲置时的超时时长,超过这个时长,非核心线程就会被回收
unit 用于指定keepAliveTime参数的时间单位。
workQueue  线程池中的任务队列
threadFactory 线程工厂

ThreadPoolExecutor执行任务时大致遵循的规则:
1 如果线程池中的线程数量未达到核心线程的数量,那么会直接启动一个核心线程来执行任务。
2 如果线程池中的线程数量已达到或者超过核心线程的数量,那么任务会被插入到任务队列中排队等待执行
3 如果2中无法将任务插入到任务队列,这往往是由于任务队列已满,这个时候如果线程数量未达到线程池规定的最大值,那么会立刻启动一个非核心线程执行任务
4 如果3中线程数量达到线程池规定的最大值,那么就拒绝执行此任务ThreadPoolExecutor会调用rejectedExecution的rejectedExecution 来通知调用者

这个是AsyncTask的线程池的配置:

     private static final int CPU_COUNT = Runtime.getRuntime().availableProcessors();
        private static final int CORE_POOL_SIZE = CPU_COUNT + 1;//核心线程数等于CPU核数+1
        private static final int MAXIMUM_POOL_SIZE = CPU_COUNT * 2 + 1;//线程池的最大线程数为CPU核数的2倍+1
        private static final int KEEP_ALIVE = 1;//核心线程无超时机制,非核心线程超时1秒  

     private static final ThreadFactory sThreadFactory = new ThreadFactory() {
            private final AtomicInteger mCount = new AtomicInteger(1);  

            public Thread newThread(Runnable r) {
                return new Thread(r, "AsyncTask #" + mCount.getAndIncrement());
            }
        };
    //任务任务队列容量128
     private static final BlockingQueue<Runnable> sPoolWorkQueue =
                new LinkedBlockingQueue<Runnable>(128);  

     public static final Executor THREAD_POOL_EXECUTOR
                = new ThreadPoolExecutor(CORE_POOL_SIZE, MAXIMUM_POOL_SIZE, KEEP_ALIVE,
                        TimeUnit.SECONDS, sPoolWorkQueue, sThreadFactory);  

下面来看线程池的分类
Executors类创建线程池:

FixedThreadPool
Executors类newFixedThreadPool创建:
 public static ExecutorService newFixedThreadPool(int nThreads) {
        return new ThreadPoolExecutor(nThreads, nThreads,
                                      0L, TimeUnit.MILLISECONDS,
                                      new LinkedBlockingQueue<Runnable>());
    }
public static ExecutorService newFixedThreadPool(int nThreads, ThreadFactory threadFactory) {
        return new ThreadPoolExecutor(nThreads, nThreads,
                                      0L, TimeUnit.MILLISECONDS,
                                      new LinkedBlockingQueue<Runnable>(),
                                      threadFactory);
    }  
CachedThreadPool   

 public static ExecutorService newCachedThreadPool() {
        return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                      60L, TimeUnit.SECONDS,
                                      new SynchronousQueue<Runnable>());
    }
 public static ExecutorService newCachedThreadPool(ThreadFactory threadFactory) {
        return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                      60L, TimeUnit.SECONDS,
                                      new SynchronousQueue<Runnable>(),
                                      threadFactory);
    }  
ScheduledThreadPool
public static ScheduledExecutorService newSingleThreadScheduledExecutor() {
        return new DelegatedScheduledExecutorService
            (new ScheduledThreadPoolExecutor(1));
    }
    public static ScheduledExecutorService newScheduledThreadPool(
            int corePoolSize, ThreadFactory threadFactory) {
        return new ScheduledThreadPoolExecutor(corePoolSize, threadFactory);
    }  
SingleThreadExecutor
 public static ExecutorService newSingleThreadExecutor() {
        return new FinalizableDelegatedExecutorService
            (new ThreadPoolExecutor(1, 1,
                                    0L, TimeUnit.MILLISECONDS,
                                    new LinkedBlockingQueue<Runnable>()));
    }
    public static ScheduledExecutorService newSingleThreadScheduledExecutor(ThreadFactory threadFactory) {
        return new DelegatedScheduledExecutorService
            (new ScheduledThreadPoolExecutor(1, threadFactory));
    }  
时间: 2024-08-29 16:57:02

android线程与线程池-----线程池(二)《android开发艺术与探索》的相关文章

android线程与线程池-----AsyncTask(一)《android开发艺术与探索》

线程在android是个重要的概念,从用途上讲,线程分为主线程和子线程,主线程负责页面相关,子线程负责耗时操作. 在android中除了Thread本身还有 AsyncTask  IntentService  HandlerThread. AsyncTask public abstract class AsyncTask<Params, Progress, Result> 1 Params 参数类型 2 Progress 执行进度类型 3 Result 返回数据类型 不需要参数可以用Void代

Android 四种常见的线程池

引入线程池的好处 1)提升性能.创建和消耗对象费时费CPU资源 2)防止内存过度消耗.控制活动线程的数量,防止并发线程过多. 我们来看一下线程池的简单的构造 public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue workQueue, ThreadFactory threadFactory, RejectedExecution

java多线程系类:JUC线程池:03之线程池原理(二)(转)

概要 在前面一章"Java多线程系列--"JUC线程池"02之 线程池原理(一)"中介绍了线程池的数据结构,本章会通过分析线程池的源码,对线程池进行说明.内容包括:线程池示例参考代码(基于JDK1.7.0_40)线程池源码分析(一) 创建"线程池"(二) 添加任务到"线程池"(三) 关闭"线程池" 转载请注明出处:http://www.cnblogs.com/skywang12345/p/3509954.h

Android性能优化之使用线程池

在写程序时有些异步程序只执行一遍就不需要了,为了方便经常会写下面的代码 new Thread(new Runnable() { @Override public void run() { // TODO Auto-generated method stub } }).start(); 这样new出来的匿名对象会存在一些问题 1.由于是匿名的,无法对它进行管理 2.如果需要多次执行这个操作就new多次,可能创建多个,占用系统资源 3.无法执行更多的操作 使用线程池的好处 1.可以重复利用存在的线程

Android性能优化之使用线程池处理异步任务

说到线程,我想大家都不陌生,因为在开发时候或多或少都会用到线程,而通常创建线程有两种方式: 1.继承Thread类 2.实现Runnable接口 虽说这两种方式都可以创建出一个线程,不过它们之间还是有一点区别的,主要区别在于在多线程访问同一资源的情况下,用Runnable接口创建的线程可以处理同一资源,而用Thread类创建的线程则各自独立处理,各自拥有自己的资源. 所以,在Java中大多数多线程程序都是通过实现Runnable来完成的,而对于Android来说也不例外,当涉及到需要开启线程去完

Android 性能优化之使用线程池处理异步任务

说到线程,我想大家都不陌生,因为在开发时候或多或少都会用到线程,而通常创建线程有两种方式: 1.继承Thread类 2.实现Runnable接口 虽说这两种方式都可以创建出一个线程,不过它们之间还是有一点区别的,主要区别在于在多线程访问同一资源的情况下,用Runnable接口创建的线程可以处理同一资源,而用Thread类创建的线程则各自独立处理,各自拥有自己的资源. 所以,在Java中大多数多线程程序都是通过实现Runnable来完成的,而对于Android来说也不例外,当涉及到需要开启线程去完

Android(java)学习笔记267:Android线程池

1. 线程池 (1)线程池的优点: 重用线程池中的线程,避免因为线程的创建和销毁所带来的性能开销. 能有效控制线程池的最大并发数,避免大量的线程之间因相互抢占系统资源而导致的阻塞现象. 能够对线程进行简单的管理,并提供定时执行以及指定间隔循环执行等功能. (2)Android中的线程池: Android中的线程池的概念来源于Java中的Executor,Executor是一个借口,真正的线程池实现为ThreadPoolExecutor. ThreadPoolExecutor提供了一系列参数来配置

并发编程 15—— 线程池 之 原理二

Java并发编程实践 目录 并发编程 01—— ConcurrentHashMap 并发编程 02—— 阻塞队列和生产者-消费者模式 并发编程 03—— 闭锁CountDownLatch 与 栅栏CyclicBarrier 并发编程 04—— Callable和Future 并发编程 05—— CompletionService : Executor 和 BlockingQueue 并发编程 06—— 任务取消 并发编程 07—— 任务取消 之 中断 并发编程 08—— 任务取消 之 停止基于线

《Android开发艺术探索》第11章 Android的线程和线程池

第11章 Android的线程和线程池 11.1 主线程和子线程 (1)在Java中默认情况下一个进程只有一个线程,也就是主线程,其他线程都是子线程,也叫工作线程.Android中的主线程主要处理和界面相关的事情,而子线程则往往用于执行耗时操作.线程的创建和销毁的开销较大,所以如果一个进程要频繁地创建和销毁线程的话,都会采用线程池的方式.(2)在Android中除了Thread,还有HandlerThread.AsyncTask以及IntentService等也都扮演着线程的角色,只是它们具有不