51NOD 1116 K进制下的大数(字符串取模 + 枚举)

传送门

1116 K进制下的大数

基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 收藏 关注

有一个字符串S,记录了一个大数,但不知这个大数是多少进制的,只知道这个数在K进制下是K - 1的倍数。现在由你来求出这个最小的进制K。

例如:给出的数是A1A,有A则最少也是11进制,然后发现A1A在22进制下等于4872,4872 mod 21 = 0,并且22是最小的,因此输出k = 22(大数的表示中A对应10,Z对应35)。

Input

输入大数对应的字符串S。S的长度小于10^5。

Output

输出对应的进制K,如果在2 - 36范围内没有找到对应的解,则输出No Solution。

Input示例

A1A

Output示例

22

解题思路:

其实我们就是枚举从出现的最大的数+1开始枚举,一直到36结束,然后基本操作就是对字符串取模,一个字符串进行取模,我们每次只需要乘以它的进制位数,然后一次累加进行取模就ok了,因为取模运算可以分开计算。(其实这个题我觉得主要是考察字符串取模的问题)

上代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>

using namespace std;
const int MAXN = 1e5+5;
char s[MAXN];
int main()
{
    while(cin>>s)
    {
        int len = strlen(s), Max = -1;
        for(int i=0; i<len; i++)
        {
            if(s[i]>=‘A‘ && s[i]<=‘Z‘)
                Max = max(Max,(s[i]-‘A‘+10));
            else
            {
                Max = max(Max,(s[i]-‘0‘));
            }
        }
        ///cout<<Max<<endl;
        if(Max == 0)///(在这里特判一下,其实不用特判也能过)
        {
            puts("No Solution");
            continue;
        }
        for(int i=Max+1; i<=36; i++)
        {
            int sum = 0;
            for(int j=0; j<len; j++)
            {
                if(s[j]>=‘A‘ && s[j]<=‘Z‘)
                {
                    sum = sum*i+(s[j]-‘A‘+10);
                    sum %= (i-1);
                }
                else
                {
                    sum = sum*i+(s[j]-‘0‘);
                    sum %= (i-1);
                }
            }
            if(sum == 0)
            {
                cout<<i<<endl;
                goto endW;
            }
        }
        puts("No Solution");
        endW:;
    }
    return 0;
}
时间: 2024-10-28 11:46:56

51NOD 1116 K进制下的大数(字符串取模 + 枚举)的相关文章

51nod 1116 K进制下的大数 (暴力枚举)

题目链接 题意:中文题. 题解:暴力枚举. #include <iostream> #include <cstring> using namespace std; const int MAXS = 1e5 + 10; const int MAXK = 36; char num[MAXS]; int main(int argc, const char * argv[]) { while (cin >> num) { int sum = 0; int len = (int)

51nod 1116:K进制下的大数

51nod 1116:K进制下的大数 题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1116 题目大意:给定一个大数,该数在$K$进制下是$K-1$的倍数,问最小的$K$($2 \leqslant K \leqslant 36$)是多少,若无解输出No Solution. 二项式定理 这题虽然可以暴力枚举,但还有更优雅的做法. 考虑一个$K$进制的大数$A$可以被表示为$\sum_{x=0}a_xK^x$,

n!在k进制下的后缀0

问n! 转化成k进制后的位数和尾数的0的个数.[UVA 10061 How many zeros and how many digits?] Given a decimal integer number you will have to find out how many trailing zeros will be there in its factorial in a given number system and also you will have to find how many di

k进制正整数的对k-1取余与按位取余

华电北风吹 天津大学认知计算与应用重点实验室 日期:2015/8/24 先说一下结论 有k进制数abcd,有abcd%(k?1)=(a+b+c+d)%(k?1) 这是由于kn=((k?1)+1)n=∑ni=0Cin(k?1)i 因此kn 对(k-1)取余的话为1 比如10进制1425%9=3,(1+4+2+5)=12%9=3. 这个性质眼下我在两个地方见到了 (一)算法导论第11章讲散列表的时候,除法散列的时候 h(k)=kmod m 对于m的选取,若m取2p或者2p?1 均是不合适的选择,前者

light oj 1045 - Digits of Factorial K进制下N!的位数

1045 - Digits of Factorial Factorial of an integer is defined by the following function f(0) = 1 f(n) = f(n - 1) * n, if(n > 0) So, factorial of 5 is 120. But in different bases, the factorial may be different. For example, factorial of 5 in base 8 i

light oj 1045 - Digits of Factorial(求阶乘在不同进制下的位数)

Factorial of an integer is defined by the following function f(0) = 1 f(n) = f(n - 1) * n, if(n > 0) So, factorial of 5 is 120. But in different bases, the factorial may be different. For example, factorial of 5 in base 8 is 170. In this problem, you

快速沃尔什变换与k进制FWT

这是一篇用来卖萌的文章QAQ 考虑以下三类卷积 \(C_k = \sum \limits_{i \;or\;j = k} A_i * B_j\) \(C_k = \sum \limits_{i\;and\;j = k} A_i * B_j\) \(C_k = \sum \limits_{i\;xor\;j = k}A_i * B_j\) 由于前两种可以用FMT(高维前缀和)解决,那我们就谈谈第三种吧 下文中的\(n\)都是形如\(2^i - 1\)的数 下标的开与闭是根据好不好写来定的,但是还是

c++ k进制Huffman树

原址:http://blog.csdn.net/Quack_quack/article/details/46958413 题目大意:给出n个数字w[],代表n个字母出现的次数,给出k.要求用k进制的数字串si替换第i个字母,且替换之后要求替换后的文章无二义性(这里的无二义性是指对于任意的 1≤i,j≤n ,i≠j,都有: si不是sj的前缀),求替换后最短的文章的长度(长度len=sigma(w[i]*strlen(si)))和这种情况下最大的si的最小值. 数据范围:n<=100000,k<

假设数n在b进制下为回文数,求最小的b

题目链接:here 假设n=b0+b1+b2....+bk 如果b2<=n,那么那么n在b进制下有多个数组成,可以直接暴力算 如果暴力没有正确的结果,即: 如果b2>n,那么n在b进制下只有两个数组成 要组成回文树,则xb+x=n  b=n/x-1 ,(n%x==0,x<b),要求b最小,则使x最大, 从sqrt(n+1)开始枚举x即可 #include<iostream> #include<cstdio> #include<cmath> using