UVa 524 Prime Ring Problem(DFS , 回溯)

题意  把1到n这n个数以1为首位围成一圈  输出所有满足任意相邻两数之和均为素数的所有排列

直接枚举排列看是否符合肯定会超时的  n最大为16  利用回溯法 边生成边判断  就要快很多了

#include<cstdio>
using namespace std;
const int N = 50;
int p[N], vis[N], a[N], n;

int isPrime(int k)
{
    for(int i = 2; i * i <= k; ++i)
        if(k % i == 0) return 0;
    return 1;
}

void dfs(int cur)
{
    if(cur == n && p[a[n - 1] + 1])
    {
        printf("%d", a[0]);
        for(int i = 1; i < n; ++i)
            printf(" %d", a[i]);
        printf("\n");
    }

    for(int i = 2; cur < n && i <= n; ++i)
    {
        if(!vis[i] && p[a[cur - 1] + i])
        {
            vis[i] = a[cur] = i;
            dfs(cur + 1);
            vis[i] = 0;
        }
    }
}

int main()
{
    int cas = 0;
    a[0] = 1;
    for(int i = 2; i < N; ++i)
        p[i] = isPrime(i);

    while(~scanf("%d", &n))
    {
        if(cas) printf("\n");
        printf("Case %d:\n", ++cas);
        dfs(1);
    }

    return 0;
}

 Prime Ring Problem 

A ring is composed of n (even number) circles as shown in diagram. Put natural numbers into
each circle separately, and the sum of numbers in two adjacent circles should be a prime.

Note: the number of first circle should always be 1.

Input

n (0 < n <= 16)

Output

The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the
above requirements.

You are to write a program that completes above process.

Sample Input

6
8

Sample Output

Case 1:
1 4 3 2 5 6
1 6 5 2 3 4

Case 2:
1 2 3 8 5 6 7 4
1 2 5 8 3 4 7 6
1 4 7 6 5 8 3 2
1 6 7 4 3 8 5 2
时间: 2024-10-18 04:36:28

UVa 524 Prime Ring Problem(DFS , 回溯)的相关文章

UVA - 524 Prime Ring Problem(dfs回溯法) 解题心得

原题 Description A ring is composed of n (even number) circles as shown in diagram. Put natural numbers  into each circle separately, and the sum of numbers in two adjacent circles should be a prime. Note: the number of first circle should always be 1.

UVa 524 Prime Ring Problem(回溯法)

传送门 Description A ring is composed of n (even number) circles as shown in diagram. Put natural numbers 1, 2, . . . , n into each circle separately, and the sum of numbers in two adjacent circles should be a prime. Note: the number of first circle sho

UVa 524 Prime Ring Problem【回溯】

题意:给出n,把从1到n排成一个环,输出相邻两个数的和为素数的序列 照着紫书敲的, 大概就是这个地方需要注意下,初始化的时候a[0]=1,然后dfs(1),从第1个位置开始搜 1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 #include <cmath> 5 #include<stack> 6 #include<vector> 7 #include<m

UVa 524 Prime Ring Problem (回溯)

第一次无指导写的回溯. 感觉也不难,小紫书上说"学习回溯短则数天,长则数月或一年以上", 但我没用一小时就懂了回溯,不知道是真懂还是假懂. 这道题很简单.细心就好. 代码如下: #include <iostream> #include <cstdio> #include <cstring> #include <cmath> using namespace std; int n, ans[25]; const int pn[] = {1,

UVA - 524 Prime Ring Problem(dfs回溯法)

UVA - 524 Prime Ring Problem Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Description A ring is composed of n (even number) circles as shown in diagram. Put natural numbers  into each circle separately, and the sum of number

[2016-02-19][UVA][524][Prime Ring Problem]

UVA - 524 Prime Ring Problem Time Limit: 3000MS Memory Limit: Unknown 64bit IO Format: %lld & %llu Submit Status Description A ring is composed of n (even number) circles as shown in diagram. Put natural numbers  into each circle separately, and the

UVa 524 - Prime Ring Problem

题目:把1-n,连续的放到一个环里,使相邻的数字和为素数,输出所有结果. 分析:搜索+剪枝.如果裸搜,用dancing-links那种拆装的链表,应该差不多满足16的数据量. 这里利用一个性质进行剪枝:相邻的数字一定是奇偶性不同的数字. (如果上述假设不成立,则存在相邻的奇数或偶数,那么他们的和一定是大于2的偶数,不是素数) 根据上面的假设,还有一条推论:只有n为偶数时才有解. (n为奇数,一直至少有一对奇数相邻,同上,矛盾(鸽巢原理)) 因此,每次搜索的数据其实是n/2,时间复杂度为O((n/

uva 524 prime ring problem——yhx

  Prime Ring Problem  A ring is composed of n (even number) circles as shown in diagram. Put natural numbers into each circle separately, and the sum of numbers in two adjacent circles should be a prime. Note: the number of first circle should always

UVA - 524 Prime Ring Problem(素数环)(回溯法)

题意:输入n,把1~n组成个环,相邻两个数之和为素数. 分析:回溯法. #pragma comment(linker, "/STACK:102400000, 102400000") #include<cstdio> #include<cstring> #include<cstdlib> #include<cctype> #include<cmath> #include<iostream> #include<s