PCA主成分分析Python实现

作者:拾毅者

出处:http://blog.csdn.net/Dream_angel_Z/article/details/50760130

Github源代码:https://github.com/csuldw/MachineLearning/tree/master/PCA

PCA(principle component analysis) 。主成分分析,主要是用来减少数据集的维度,然后挑选出基本的特征。原理简单,实现也简单。关于原理公式的推导,本文不会涉及,你能够參考以下的參考文献,也能够去Wikipedia,这里主要关注实现,算是锻炼一下自己。

本来是在复习LDA的,然后就看到了PCA。就跟着以下这篇文章的步骤,把PCA用python实现了一遍,详细的思想能够參考这篇文章,讲的通俗易懂,主要是有个实例參考,值得拥有!

以下自己来简单的清理下思路!

PCA思想

主要思想:移动坐标轴,将n维特征映射到k维上(k<n),这k维是全新的正交特征。

这k维特征称为主元,是又一次构造出来的k维特征。而不是简单地从n维特征中去除其余n-k维特征。

说到PCA难免会提到LDA(linear discriminate analysis。线性判别分析),以及FA(factor analysis,因子分析)。关于LDA。打算有时间也用代码实现一遍,以下给出它的主要思想。

LDA思想:最大类间距离,最小类内距离。简而言之,第一,为了实现投影后的两个类别的距离较远。用映射后两个类别的均值差的绝对值来度量。

第二。为了实现投影后,每一个类内部数据点比較聚集。用投影后每一个类别的方差来度量。

三者的描写叙述例如以下

以下内容引自 Wikipedia- Linear discriminant analysis

LDA is also closely related to principal component analysis (PCA) and factor analysis in that they both look for linear combinations of variables which best explain the data.[4] LDA explicitly attempts to model the difference between the classes of data. PCA on the other hand does not take into account any difference in class, and factor analysis builds the feature combinations based on differences rather than similarities. Discriminant analysis is also different from factor analysis in that it is not an interdependence technique: a distinction between independent variables and dependent variables (also called criterion variables) must be made.

差别:PCA选择样本点投影具有最慷慨差的方向,LDA选择分类性能最好的方向。

好了,以下来看下实现源代码!

基本步骤

基本步骤:

  • 对数据进行归一化处理(代码中并不是这么做的,而是直接减去均值)
  • 计算归一化后的数据集的协方差矩阵
  • 计算协方差矩阵的特征值和特征向量
  • 保留最重要的k个特征(通常k要小于n)。也能够自己制定。也能够选择一个阈值,然后通过前k个特征值之和减去后面n-k个特征值之和大于这个阈值,则选择这个k
  • 找出k个特征值相应的特征向量
  • 将m * n的数据集乘以k个n维的特征向量的特征向量(n * k),得到最后降维的数据。

事实上PCA的本质就是对角化协方差矩阵。有必要解释下为什么将特征值按从大到小排序后再选。

首先,要明确特征值表示的是什么?在线性代数里面我们求过无数次了。那么它详细有什么意义呢?对一个n*n的对称矩阵进行分解。我们能够求出它的特征值和特征向量,就会产生n个n维的正交基,每一个正交基会相应一个特征值。

然后把矩阵投影到这N个基上,此时特征值的模就表示矩阵在该基的投影长度。

特征值越大。说明矩阵在相应的特征向量上的方差越大。样本点越离散。越easy区分,信息量也就越多。因此。特征值最大的相应的特征向量方向上所包括的信息量就越多,假设某几个特征值非常小。那么就说明在该方向的信息量非常少,我们就能够删除小特征值相应方向的数据,仅仅保留大特征值方向相应的数据,这样做以后数据量减小。但实用的信息量都保留下来了。PCA就是这个原理。

源代码实现

1.首先引入numpy,由于測试中用到了pandas和matplotlib。所以这里一并载入

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

2.定义一个均值函数

#计算均值,要求输入数据为numpy的矩阵格式,行表示样本数,列表示特征
def meanX(dataX):
    return np.mean(dataX,axis=0)#axis=0表示依照列来求均值。假设输入list,则axis=1

3.编写pca方法,详细解释參考凝视

"""
參数:
    - XMat:传入的是一个numpy的矩阵格式,行表示样本数,列表示特征
    - k:表示取前k个特征值相应的特征向量
返回值:
    - finalData:參数一指的是返回的低维矩阵,相应于输入參数二
    - reconData:參数二相应的是移动坐标轴后的矩阵
"""
def pca(XMat, k):
    average = meanX(XMat)
    m, n = np.shape(XMat)
    data_adjust = []
    avgs = np.tile(average, (m, 1))
    data_adjust = XMat - avgs
    covX = np.cov(data_adjust.T)   #计算协方差矩阵
    featValue, featVec=  np.linalg.eig(covX)  #求解协方差矩阵的特征值和特征向量
    index = np.argsort(-featValue) #依照featValue进行从大到小排序
    finalData = []
    if k > n:
        print "k must lower than feature number"
        return
    else:
        #注意特征向量时列向量。而numpy的二维矩阵(数组)a[m][n]中,a[1]表示第1行值
        selectVec = np.matrix(featVec.T[index[:k]]) #所以这里须要进行转置
        finalData = data_adjust * selectVec.T
        reconData = (finalData * selectVec) + average
    return finalData, reconData

4.编写一个载入数据集的函数

#输入文件的每行数据都以\t隔开
def loaddata(datafile):
    return np.array(pd.read_csv(datafile,sep="\t",header=-1)).astype(np.float)

5.可视化结果

由于我将维数k指定为2,所以能够使用以下的函数将其绘制出来:

def plotBestFit(data1, data2):
    dataArr1 = np.array(data1)
    dataArr2 = np.array(data2)

    m = np.shape(dataArr1)[0]
    axis_x1 = []
    axis_y1 = []
    axis_x2 = []
    axis_y2 = []
    for i in range(m):
        axis_x1.append(dataArr1[i,0])
        axis_y1.append(dataArr1[i,1])
        axis_x2.append(dataArr2[i,0])
        axis_y2.append(dataArr2[i,1])
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.scatter(axis_x1, axis_y1, s=50, c=‘red‘, marker=‘s‘)
    ax.scatter(axis_x2, axis_y2, s=50, c=‘blue‘)
    plt.xlabel(‘x1‘); plt.ylabel(‘x2‘);
    plt.savefig("outfile.png")
    plt.show()  

6.測试方法

測试方法写入main函数中,然后直接运行main方法就可以:

data.txt可到github中下载:data.txt

#依据数据集data.txt
def main():
    datafile = "data.txt"
    XMat = loaddata(datafile)
    k = 2
    return pca(XMat, k)
if __name__ == "__main__":
    finalData, reconMat = main()
    plotBestFit(finalData, reconMat)

结果展示

最后的结果图例如以下:

蓝色部分为重构后的原始数据。红色则是提取后的二维特征!

參考文献

[1] http://www.cnblogs.com/jerrylead/archive/2011/04/18/2020209.html

[2] Wikipedia- Linear discriminant analysis

[3] Wikipedia- Principal_component_analysis

时间: 2024-10-08 08:34:39

PCA主成分分析Python实现的相关文章

【机器学习算法-python实现】PCA 主成分分析、降维

1.背景 PCA(Principal Component Analysis),PAC的作用主要是降低数据集的维度,然后挑选出主要的特征. PCA的主要思想是移动坐标轴,找到方差最大的方向上的特征值,什么叫方差最大的方向的特征值呢.就像下图中的曲线B,一样,它的覆盖范围最广. 基本步骤:(1)首先计算数据集的协方差矩阵 (2)计算协方差矩阵的特征值和特征向量 (3)保留最重要的n个特征 what is 协方差矩阵: 定义是变量向量减去均值向量,然后乘以变量向量减去均值向量的转置再求均值.例如x是变

机器学习之PCA主成分分析

前言            以下内容是个人学习之后的感悟,转载请注明出处~ 简介 在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性.人们自然希望变量个数较少而得到的 信息较多.在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反 映此课题的信息有一定的重叠.主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立 尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有

PCA(主成分分析)方法浅析

PCA(主成分分析)方法浅析 降维.数据压缩 找到数据中最重要的方向:方差最大的方向,也就是样本间差距最显著的方向 在与第一个正交的超平面上找最合适的第二个方向 PCA算法流程 上图第一步描述不正确,应该是去中心化,而不是中心化 具体来说,投影这一环节就是:将与特征值对应的k个特征向量分别作为行向量组成特征向量矩阵P 直接乘以特征变量就好.原来是二维数据,降维之后只有一维. 我们想保留几个维度的特征,就留下几个特征值和对应的特征向量. 原文地址:https://www.cnblogs.com/j

PCA主成分分析 原理讲解 python代码实现

本文参考自:https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/13.PCA/pca.py https://github.com/lawlite19/MachineLearning_Python#%E5%85%ADpca%E4%B8%BB%E6%88%90%E5%88%86%E5%88%86%E6%9E%90%E9%99%8D%E7%BB%B4 1. 用途: 通俗来说: 考察一个人的智力情况,就直接看数学成绩就行(存在:

PCA主成分分析

原文地址链接 1. 问题 真实的训练数据总是存在各种各样的问题: 1. 比如拿到一个汽车的样本,里面既有以“千米/每小时”度量的最大速度特征,也有“英里/小时”的最大速度特征,显然这两个特征有一个多余. 2. 拿到一个数学系的本科生期末考试成绩单,里面有三列,一列是对数学的兴趣程度,一列是复习时间,还有一列是考试成绩.我们知道要学好数学,需要有浓厚的兴趣,所以第二项与第一项强相关,第三项和第二项也是强相关.那是不是可以合并第一项和第二项呢? 3. 拿到一个样本,特征非常多,而样例特别少,这样用回

OpenCV+Qt:基于PCA主成分分析的人脸识别例程

在模式识别领域中,PCA是一种常用的数据集降维手段,在此基础上,保留数据集中对方差贡献最大的特征从而进行模式分类.OpenCV中提供PCA的类,因此可以方便地使用PCA来进行人脸识别研究.在学习了网上的相关实现和代码,在以下开发平台跑通了代码:win8.1+OpenCV2.4.9+Qt5.3.2. 一.基本步骤 关于PCA的一些理论,可参照:http://blog.csdn.net/liyuefeilong/article/details/45126255 以下是实现PCA的基本思路: 1.把原

PCA主成分分析+白化

引言 主成分分析(PCA)是一种能够极大提升无监督特征学习速度的数据降维算法.更重要的是,理解PCA算法,对实现白化算法有很大的帮助,很多算法都先用白化算法作预处理步骤. 假设你使用图像来训练算法,因为图像中相邻的像素高度相关,输入数据是有一定冗余的.具体来说,假如我们正在训练的16x16灰度值图像,记为一个256维向量  ,其中特征值  对应每个像素的亮度值.由于相邻像素间的相关性,PCA算法可以将输入向量转换为一个维数低很多的近似向量,而且误差非常小. 实例和数学背景 在我们的实例中,使用的

转:PCA的Python实现

http://blog.csdn.net/jerr__y/article/details/53188573 本文主要参考下面的文章,文中的代码基本是把第二篇文章的代码手写实现了一下. - pca讲解:http://www.cnblogs.com/jerrylead/archive/2011/04/18/2020209.html - python实现:http://blog.csdn.net/u012162613/article/details/42177327 总体代码 """

【主成分分析】PCA主成分分析原理详解

声明:本文是转载自他处,原文载于此:http://blog.csdn.net/zhongkelee/article/details/44064401 一.PCA简介 1. 相关背景 上完陈恩红老师的<机器学习与知识发现>和季海波老师的<矩阵代数>两门课之后,颇有体会.最近在做主成分分析和奇异值分解方面的项目,所以记录一下心得体会. 在许多领域的研究与应用中,往往需要对反映事物的多个变量进行大量的观测,收集大量数据以便进行分析寻找规律.多变量大样本无疑会为研究和应用提供了丰富的信息,