JAVA 年轻代收集器 第九节

JAVA 年轻代收集器  第九节

继续上一章所讲的,STW即GC时候的停顿时间,他会暂停我们程序中的所有线程。如果STW所用的时间长而且次数多的话,那么我们整个系统稳定性以及可用性将大大降低。

因此我们在必要的时候需要对虚拟机进行调优,那么调优的主要目标之一就是降低STW的时间,也就是减少Full GC的次数。那么这里我们从调优的角度来分析各个收集器的优势与不足。

首先从作用于年轻代的收集器开始(采用复制的收集算法):

Serial收集器:一个单线程收集器,在进行回收的时候,必须暂停其他所有的工作线程,直到收集结束。缺点:因为要完全暂停线程,所以用户体验不佳。但是由于新生代回收得较快,所以停顿的时间非常少,而且没有线程切换的开销,因此也简单高效。通过 -XX:+UseSerialGC参数启用。

ParNew收集器:这个是Serial收集器的多线程版本,适用于多核CPU的设备。但对于单核的设备来说,需要进行线程之间的切换,效率反而没有单线程的高。通过-XX:ParallelGCThreads参数限制收集的线程数,-XX:+UseParNewGC参数启用。

Parallel Scavenge收集器:该收集器是我们文章中的所有例子的默认年轻代收集器。他的关注点和其他的收集器不同,其他的关注点是尽可能的缩短Full GC的时间。而该收集器关注的是一个可控的吞吐量。吞吐量=运行代码的时间/(运行代码的时间+GC的时间),通过参数-XX:MaxGCPauseMillis设置最大GC的停顿时间和-XX:GCTimeRatio 设置吞吐量的大小。-XX:+UseParallelGC参数启用。主要适合在后台运算而不需要太多交互的任务。

可以通过-XX:+UseAdaptiveSizePolicy参数开启自适应调节策略,这样可以免去我们自己设置堆内存的一些细节参数,比如新生代内存大小,Eden与Survivor之间的比例等等。这个参数适合对内存手工优化存在困难的时候使用,他能监控系统当前的状态,动态的调整以达到最大的吞吐量。

这里我们只大概了解了下年轻代的收集器,下面一张图给大家总结一下:

不过大家不要认为如果把这个参数设置的(MaxGCPauseMills)设置的稍小一点就能是垃圾回收集速度变得更快,GC停顿的等待时间是以牺牲吞吐量

和新生代空间来换取的:系统把新生代调小一些,手机300MB新生代肯定要比手机500MB快把,这也是直接导致垃圾收集发生的更频繁一些,

原来10秒收集一次、每次停顿100毫秒,现在变成5秒收集一次、每次停顿70毫秒。停顿时间的确在下降,但吞吐量也下降了。

—XX:UseAdaptiveSizePolicy  开关打开后 ,就不需要手动设置新生代大小,Eden和Survior区比例  和晋升老生代对象大小(参见深入理解JAVA虚拟机第79页)

时间: 2024-10-10 13:52:25

JAVA 年轻代收集器 第九节的相关文章

JAVA 年老代收集器 第10节

JAVA 年老代收集器 第10节 上一章我们讲了新生代的收集器,那么这一章我们要讲的就是关于老年代的一些收集器.老年代的存活的一般是大对象以及生命很顽强的对象,因此新生代的复制算法很明显不能适应该区域的特性,所以老年代采用的是“标记-清除-整理”算法(以前的章节有详细讨论过). SerilalOld收集器:该收集器是Serial收集器的老年代版,同样是一个单线程的收集器,优劣势和Serial收集器一样,这里就不多说了. Parallel Old收集器:在我们之前文章的代码例子中默认的年老代收集器

图解Java中的GC(分代收集器)

前面在Java垃圾收集算法中讲过垃圾收集算法中的分代收集器,今天看了一个视频发现里面将的也很不错,所以决定再总结一下. 我们知道,在分代收集算法中堆空间被分为新生代和老年代.因为新生代中对象的存活率比较低,所以一般采用复制算法,老年代的存活率一般比较高,一般使用"标记-清理"或者"标记-整理"算法进行回收. 上面的这个图已经很清楚的将堆的分区展现出来了. 下面我们来看看具体的算法过程. 新创建的对象一般放在新生代的Enden区,如下图所示. 上面对象中,绿色代表的是

Java GC收集器配置说明

根据Java GC收集器具体分类,我们可以看出JVM根据需求不同提供了三种选择:串行收集器.并行收集器.并发收集器. 串行收集器只适用于小数据量的情况,我们主要了解一下并行收集器和并发收集器.默认情况下,JDK5.0以前都是使用串行收集器,如果需要使用其他收集器需要在启动的是时候加入相应的参数.JDK5.0以后,JVM会根据当前系统的配置进行判断. 我们先了解一下什么是并行和并发? 并行:指多条垃圾收集器线程并行工作,但此时仍是“Stop The World”状态,即用户线程处于等待状态: 并发

《深入理解java虚拟机》笔记(7)JVM调优(分代垃圾收集器)

以下配置主要针对分代垃圾回收算法而言. 一.堆大小设置 年轻代的设置很关键 JVM中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制:系统的可用虚拟内存限制:系统的可用物理内存限制.32位系统下,一般限制在1.5G~2G:64为操作系统对内存无限制.在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m. 典型设置: java -Xmx3550m -Xms3550m -Xmn2g –Xss128k -Xmx35

Java垃圾回收-分代收集

Java自动垃圾回收(Automatic Garbage Collection)是自动回收堆上不再使用的内存,new的对象在程序中没有引用指向它,就会被回收.回收的实现很多,有Reference Counting Collector/Tracing Collector/Compacting Collector/Coping Collector/Generational Collector/Adaptive Collector.本文记录的是HotSpot Java VM采用的Generationa

jvm的stack和heap,JVM内存模型,垃圾回收策略,分代收集,增量收集(转)

深入Java虚拟机:JVM中的Stack和Heap(转自:http://www.cnblogs.com/laoyangHJ/archive/2011/08/17/gc-Stack.html) 在JVM中,内存分为两个部分,Stack(栈)和Heap(堆),这里,我们从JVM的内存管理原理的角度来认识Stack和Heap,并通过这些原理认清Java中静态方法和静态属性的问题. 一般,JVM的内存分为两部分:Stack和Heap. Stack(栈)是JVM的内存指令区.Stack管理很简单,push

清除收集器

2.1.标记-清除收集器 这种收集器首先遍历对象图并标记可到达的对象,然后扫描堆栈以寻找未标记对象并释放它们的内存.这种收集器一般使用单线程工作并停止其他操作. 2.2.标记-压缩收集器 有时也叫标记-清除-压缩收集器,与标记-清除收集器有相同的标记阶段.在第二阶段,则把标记对象复制到堆栈的新域中以便压缩堆栈.这种收集器也停止其他操作. 2.3.复制收集器 这种收集器将堆栈分为两个域,常称为半空间.每次仅使用一半的空间,jvm生成的新对象则放在另一半空间中.gc运行时,它把可到达对象复制到另一半

深入理解Java虚拟机笔记---垃圾收集器

如果说收集算法是内存回收的方法论,那么垃圾收集器就是内存回收的具体实现.Java虚拟机规范中对象垃圾收集器应该如何实现并没有任何规定,因此不同的厂商,不同版本的虚拟机所提供的收集器可能会有很的差别,并且一般会提供参数供用户根据自己的应用特点和要求组合出各个年代所使用的收集器.下面是Sun HotSpot虚拟机1.6版本Update22包含的所有收集器: 上图中,如果两个收集器之间存在连线,就说明它们可以搭配使用. 1.Serial收集器 Serial收集器是最基本.历史最悠久的收集器,曾经(在J

JAVA G1收集器 第11节

JAVA G1收集器 第11节 上两章我们讲了新生代和年老代的收集器,那么这一章的话我们就要讲一个收集范围涵盖整个堆的收集器——G1收集器. 先讲讲G1收集器的特点,他也是个多线程的收集器,能够充分利用多个CPU进行工作,收集方式也与CMS收集器类似,因此不会有太久的停顿. 虽然回收的范围是整个堆,但还是有分代回收的回收方式.在年轻代依然采用复制算法:年老代也同样采用“标记-清除-整理”算法.但是,新生代与老年代在堆内存中的布局就和以往的收集器有着很大的区别:G1将整个堆分成了一个个大小相等的独