异常点/离群点检测算法——LOF

http://blog.csdn.net/wangyibo0201/article/details/51705966

在数据挖掘方面,经常需要在做特征工程和模型训练之前对数据进行清洗,剔除无效数据和异常数据。异常检测也是数据挖掘的一个方向,用于反作弊、伪基站、金融诈骗等领域。 
  异常检测方法,针对不同的数据形式,有不同的实现方法。常用的有基于分布的方法,在上、下α分位点之外的值认为是异常值(例如图1),对于属性值常用此类方法。基于距离的方法,适用于二维或高维坐标体系内异常点的判别,例如二维平面坐标或经纬度空间坐标下异常点识别,可用此类方法。 
   
  这次要介绍一下一种基于距离的异常检测算法,局部异常因子LOF算法(Local Outlier Factor)。 
  用视觉直观的感受一下,如图2,对于C1集合的点,整体间距,密度,分散情况较为均匀一致,可以认为是同一簇;对于C2集合的点,同样可认为是一簇。o1、o2点相对孤立,可以认为是异常点或离散点。现在的问题是,如何实现算法的通用性,可以满足C1和C2这种密度分散情况迥异的集合的异常点识别。LOF可以实现我们的目标。 
   
  下面介绍LOF算法的相关定义: 
  1) d(p,o):两点p和o之间的距离; 
  2) k-distance:第k距离 
    对于点p的第k距离dk(p)定义如下: 
    dk(p)=d(p,o),并且满足: 
      a) 在集合中至少有不包括p在内的k个点o,∈C{x≠p}, 满足d(p,o,)≤d(p,o) ; 
      b) 在集合中最多有不包括p在内的k−1个点o,∈C{x≠p},满足d(p,o,)<d(p,o) ; 
    p的第k距离,也就是距离p第k远的点的距离,不包括p,如图3。 
     
  3) k-distance neighborhood of p:第k距离邻域 
    点p的第k距离邻域Nk(p),就是p的第k距离即以内的所有点,包括第k距离。 
    因此p的第k邻域点的个数 |Nk(p)|≥k。 
  4) reach-distance:可达距离 
    点o到点p的第k可达距离定义为: 
    reach−distancek(p,o)=max{k−distance(o),d(p,o)} 
    也就是,点o到点p的第k可达距离,至少是o的第k距离,或者为o、p间的真实距离。 
    这也意味着,离点o最近的k个点,o到它们的可达距离被认为相等,且都等于dk(o)。 
    如图4,o1到p的第5可达距离为d(p,o1),o2到p的第5可达距离为d5(o2)。 
     
  5) local reachability density:局部可达密度 
    点p的局部可达密度表示为:

lrdk(p)=1/(∑o∈Nk(p)reach−distk(p,o)|Nk(p)|)

    表示点p的第k邻域内点到p的平均可达距离的倒数。 
    注意,是p的邻域点Nk(p)到p的可达距离,不是p到Nk(p)的可达距离,一定要弄清楚关系。并且,如果有重复点,那么分母的可达距离之和有可能为0,则会导致lrd变为无限大,下面还会继续提到这一点。 
    这个值的含义可以这样理解,首先这代表一个密度,密度越高,我们认为越可能属于同一簇,密度越低,越可能是离群点。如果p和周围邻域点是同一簇,那么可达距离越可能为较小的dk(o),导致可达距离之和较小,密度值较高;如果p和周围邻居点较远,那么可达距离可能都会取较大值d(p,o),导致密度较小,越可能是离群点。 
  6) local outlier factor:局部离群因子 
    点p的局部离群因子表示为:

LOFk(p)=∑o∈Nk(p)lrdk(o)lrdk(p)|Nk(p)|=∑o∈Nk(p)lrdk(o)|Nk(p)|/lrdk(p)

    表示点p的邻域点Nk(p)的局部可达密度与点p的局部可达密度之比的平均数。 
    如果这个比值越接近1,说明p的其邻域点密度差不多,p可能和邻域同属一簇;如果这个比值越小于1,说明p的密度高于其邻域点密度,p为密集点;如果这个比值越大于1,说明p的密度小于其邻域点密度,p越可能是异常点。 
  现在概念定义已经介绍完了,现在再回过头来看一下lof的思想,主要是通过比较每个点p和其邻域点的密度来判断该点是否为异常点,如果点p的密度越低,越可能被认定是异常点。至于密度,是通过点之间的距离来计算的,点之间距离越远,密度越低,距离越近,密度越高,完全符合我们的理解。而且,因为lof对密度的是通过点的第k邻域来计算,而不是全局计算,因此得名为“局部”异常因子,这样,对于图1的两种数据集C1和C2,lof完全可以正确处理,而不会因为数据密度分散情况不同而错误的将正常点判定为异常点。 
  算法思想已经讲完了,现在进入干货环节,亮代码。 
  给一个python实现的lof算法: 
  https://github.com/damjankuznar/pylof 
  再给一下我fork之后的代码: 
  https://github.com/wangyibo360/pylof 
  有区别: 
  上面提到了,对于重复点局部可达密度可能会变为无限大的问题,我改的代码对这个问题做了处理,如果有重复点方面的场景,可以用我的代码,源代码这块有bug没有fix,而且好像代码主人无踪影了,提的pull也没人管。。。

时间: 2024-08-03 10:56:21

异常点/离群点检测算法——LOF的相关文章

离群点检测算法-基础概念

定义: Hawkins给出的离群点的本质性定义:离群点是数据集中偏离大部分数据的数据,由于偏离其它数据太多,使人怀疑这些数据的偏离并非由随机因素产生,而是产生于完全不同的机制. 大致分类: 一例分析步骤: 常用离群点检测方法优劣分析: 参考: 离群点检测技术在教育教学中的应用: http://kns.cnki.net/kcms/detail/Detail.aspx?dbname=CJFDLAST2018&filename=XJJS201806016&v=&filetitle=%e7

基于两步聚类的离群点检测

转载请标明出处:http://www.cnblogs.com/tiaozistudy/p/anomaly_detection.html 本文主要针对IBM SPSS Modeler 18.0中离群点检测算法的原理以及“异常”节点(见图1)使用方法进行说明.SPSS Modeler中的离群点检测算法思想主要基于聚类分析.如图2所示,可先将图中样本点聚成三类,$A$.$B$和$C$三个样本点应分别属于距离他们最近的类,但与相对类内的其他样本点,这三个点又分别远离各自的类,所以可以基于此判定是离群点.

异常点检测算法小结

异常点检测,有时也叫离群点检测,英文一般叫做Novelty Detection或者Outlier Detection,是比较常见的一类非监督学习算法,这里就对异常点检测算法做一个总结. 一.1.?异常点检测算法使用场景 什么时候我们需要异常点检测算法呢?常见的有三种情况.一是在做特征工程的时候需要对异常的数据做过滤,防止对归一化等处理的结果产生影响.二是对没有标记输出的特征数据做筛选,找出异常的数据.三是对有标记输出的特征数据做二分类时,由于某些类别的训练样本非常少,类别严重不平衡,此时也可以考

异常点检测算法

基于统计学的方法 一.基于正态分布的一元离群点检测方法 假设有 n 个点$(x_1, ...,x_n)$, 那么可以计算出这n个点的均值$\mu$和方差$\sigma$.均值和方差分别被定义为: 在正态分布的假设下,区域$\mu +- 3 \sigma$包含了99.7% 的数据,如果某个值距离分布的均值$\mu$超过了$3 \sigma$,那么这个值就可以被简单的标记为一个异常点(outlier). 二.多元离群点的检测方法 涉及两个或者两个以上变量的数据称为多元数据,很多一元离群点的检测方法都

【读书笔记-数据挖掘概念与技术】离群点检测

1   离群点和离群点分析 1.2    离群点的类型 a.全局离群点 显著偏离数据集中的其余对象,最简单的一类离群点. 检测方法:找到一个合适的偏离度量 b.情境离群点 离群点的值依赖于情境.分为情境属性(定义对象的情境)和行为属性(定义对象的特征) c.集体离群点 数据对象的子集形成集体离群点,如果这些对象作为整体显著偏离整个数据集. 1.3   离群点检测的挑战 正常数据与异常数据的界限不明显: 离群点≠噪声 2   离群点检测方法 两大类:         a.根据用于分析的数据样本是否

异常检测算法--Isolation Forest

南大周志华老师在2010年提出一个异常检测算法Isolation Forest,在工业界很实用,算法效果好,时间效率高,能有效处理高维数据和海量数据,这里对这个算法进行简要总结. iTree 提到森林,自然少不了树,毕竟森林都是由树构成的,看Isolation Forest(简称iForest)前,我们先来看看Isolation Tree(简称iTree)是怎么构成的,iTree是一种随机二叉树,每个节点要么有两个女儿,要么就是叶子节点,一个孩子都没有.给定一堆数据集D,这里D的所有属性都是连续

一种通用的网页相似度检测算法

如果我们需要在海量的结构未知的网页库中找到和指定的网页相似度比较高的一些网页,我们该怎么办呢?本文提出的"一种通用的网页相似度检测算法"就是专门解决这个问题. 算法如下: 1.提取网页文本.这个提取步骤不要求精确,也没办法精确,因为你面对的是未知结构的网页,所以只需要提取去掉标签之后的文本即可. 2.对提取的文本进行分词.我们使用开源的中文分词组件word分词. 3.为每一个网页建立一个词向量,向量的维度就是两个网页的不重复词的并集,每一个维度的权重就是词频TF,我们这里忽略IDF也不

浅谈Virtual Machine Manager(SCVMM 2012) cluster 过载状态检测算法

在我们使用scvmm2012的时候,经常会看到群集状态变成了这样 点开看属性后,我们发现是这样 . 发现了吗?Over-committed,如果翻译过来就是资源过载,或者说资源过量使用了,那么这个状态是怎么出现的呢? 出现这个状态以后会出现什么问题?怎么解决? 今天我们就谈一谈在SCVMM中over-committed的算法,知道SCVMM是如何确认一个群集是否过载后,就知道如何避免它,带来种种问题也就能解决了 part 1. 算法概述 SCVMM 2012 群集的过载检查主要是用来确认整个群集

检测算法简介及其原理——fast R-CNN,faster R-CNN,YOLO,SSD,YOLOv2,YOLOv3

1 引言 深度学习目前已经应用到了各个领域,应用场景大体分为三类:物体识别,目标检测,自然语言处理.本文着重与分析目标检测领域的深度学习方法,对其中的经典模型框架进行深入分析. 目标检测可以理解为是物体识别和物体定位的综合,不仅仅要识别出物体属于哪个分类,更重要的是得到物体在图片中的具体位置. 为了完成这两个任务,目标检测模型分为两类.一类是two-stage,将物体识别和物体定位分为两个步骤,分别完成,这一类的典型代表是R-CNN, fast R-CNN, faster-RCNN家族.他们识别