C++11新特性之五——可变参数模板

有些时候,我们定义一个函数,可能这个函数需要支持可变长参数,也就是说调用者可以传入任意个数的参数。比如C函数printf().

我们可以这么调用。

printf("name: %s, number: %d", "Obama", 1);  

那么这个函数是怎么实现的呢?其实C语言支持可变长参数的。

我们举个例子,

double Sum(int count, ...)
{
    va_list ap;
    double sum = 0;  

    va_start(ap, count);  

    for (int i = 0; i < count; ++i)
    {
        double arg = va_arg(ap, double);
        sum += arg;
    }  

    va_end(ap);  

    return sum;
}  

上面这个函数,接受变长参数,用来把所有输入参数累加起来。可以这么调:

double sum = Sum(4, 1.0, 2.0, 3.0, 4.0);  

计算结果是10,很好。

 那么C语言的这个函数有什么问题呢?

1. 函数本身并不知道传进来几个参数,比如我现在多传一个参数,或者少传一个参数,那么函数本身是检测不到这个问题的。这就可能会导致未定义的错误。

2. 函数本身也不知道传进来的参数类型。以上面的例子,假如我把第二个参数1.0改成一个字符串,又如何?答案就是会得到未定义的错误,也就是不知道会发生什么。

3. 对于可变长参数,我们只能用__cdecl调用约定,因为只有调用者才知道传进来几个参数,那么也只有调用者才能维持栈平衡。如果是__stdcall,那么函数需要负责栈平衡,可是函数本身根本不知道有几个参数,函数调用结束后,根本不知道需要将几个参数pop out。(注:某些编译器如VS,如果用户写了个__stdcall的可变长参数函数,VS会自动转换成__cdecl的,当然这是编译器干的事情)

在C++语言里面,在C++11之前,C++也只是兼容了C的这种写法,而C++本身并没有更好的替代方案。其实对于C++这种强类型语言而言,C的这种可变长方案等于是开了个后门,函数居然不知道传进来的参数是什么类型。所以在C++11里面专门提供了对可变长参数的更现代化的支持,那就是可变长模板。

模板参数包(template parameter pack)

template<typename... A> class Car;  

typename...就表示一个模板参数包。可以这么来实例化模板:

Car<int, char> car; 

再来看一个更加具体的例子:

template<typename T1, typename T2> class Car{};
template<typename... A> class BMW : public Car<A...>{};
BMW<int, char> car;  

在这个例子里面,BMW是一个可变参数的模板,它继承于类Car. 那么BMW<int, char> car;在进行模板推导的时候,可以认为变成Car<int, char>了。这其中的功劳应该属于A...,

A...称之为包扩展(pack extension),包扩展是可以传递的。比如继承的时候,或者直接在函数参数里面传递。然后当编译器进行推导的时候,就会对这个包扩展进行展开,上面的例子,A...就展开成了int, char。C++11定义了可以展开包的几个地方:

1. 表达式

2. 初始化列表

3. 基类描述列表

4. 类成员初始化列表

5. 模板参数列表

6. 通用属性列表

7. lamda函数的捕捉列表

其他地方是不能展开的。

针对上面的例子,如果我们改成BMW<int, char, int> car, 会如何呢?编译的时候就直接报错了,

Error 1  error C2977: ‘Car‘ : too many template arguments d:\study\consoleapplication2\variablelengthparameters\variablelengthparameters.cpp27 1 VariableLengthParameters

这是因为当展开的时候,A...变成了int, char, int了,可能基类根本就没有3个模板参数,所以推导就出错了。那如果这样的话,可变长参数还是啥意义呢?这等于每次的参数个数还是固定的啊。当然不会这么傻,其实C++11可以通过递归来实现真正的可变长的。看下面的代码。

template<typename... A> class BMW{};  

template<typename Head, typename... Tail>
class BMW<Head, Tail...> : public BMW<Tail...>
{
public:
    BMW()
    {
        printf("type: %s\n", typeid(Head).name());
    }
private:
    Head head;
};  

template<> class BMW<>{};  // 边界条件  

BMW<int, char, float> car;  

如果我们运行这段代码,会发现构造函数被调用了3次。第一次得到的类型是float,第二次是char,第三次是int。这就好像模板实例化的时候层层展开了。实际上也就是这么一回事情。这里使用了C++模板的特化来实现了递归,每递归一次就得到一个类型。看一下对象car里面有什么:

可以清晰的看到car里面有三个head。基类里面的head是float,第二个head是char,第三个head是int。

有了这个基础之后,我们就可以实现我们的可变长模板类了,std::tuple就是个很好的例子。可以看看它的源代码,这里就不再介绍了。

可变长模板不光可以用于类的定义,也可以用户函数模板。接下来,就用可变长参数来实现一个Sum函数,然后跟上面的C语言版本做对比。

可变长模板实现Sum函数

直接看代码:

template<typename T1, typename... T2> double Sum2(T1 p, T2... arg)
{
    double ret = p + Sum2(arg...);  

    return ret;
}  

double Sum2()  // 边界条件
{
    return 0;
}  

在上面的代码里面,可以很清楚的看到递归。

double ret2 = Sum2(1.0, 2.0, 3.0, 4.0);  

这条调用代码同样得到结果10.这样过程可以理解为,边界条件的函数先执行完毕,然后4.0的执行完毕,再3.0,2.0,1.0以此被执行完毕。一个典型的递归。

ok,那么跟C语言版本相比,又有哪些好处呢?

变长模板优点

之前提到的几个C语言版本的主要缺点:

1. 参数个数,那么对于模板来说,在模板推导的时候,就已经知道参数的个数了,也就是说在编译的时候就确定了,这样编译器就存在可能去优化代码。

2. 参数类型,推导的时候也已经确定了,模板函数就可以知道参数类型了。

3. 既然编译的时候就知道参数个数和参数类型了,那么调用约定也就没有限制了。

来实验一下第二点吧

int _tmain(int argc, _TCHAR* argv[])
{
    double ret1 = Sum(4, 1.0, 2.0, 3.0, 4.0, "abcd");
    double ret2 = Sum2(1.0, 2.0, 3.0, 4.0, "abcd");  

    return 0;
}  

Sum是C语言版本,最后一个参数传了个字符串,但是Sum函数是无法检测这个错误的。结果也就是未定义。

Sum2是个模板函数,最后一个参数也是字符串,在编译的时候就报错了,

Error 1  error C2111: ‘+‘ : pointer addition requires integral operandd:\study\consoleapplication2\variablelengthparameters\variablelengthparameters.cpp29 1 VariableLengthParameters

double无法和字符串相加,这样在编译的时候就告诉我们这个错误了,我们就可以修复它,但是C语言的版本不会报错,代码也就失控了,不知道会得到什么结果。

怎么样,变长模板比C语言的变长参数好一些吧。

所以,我们还是尽可能使用C++11的变长模板吧。

最后一个问题,为什么使用变长参数呢?有些人可能会问,是不是可以把所有的参数放到一个list里面,然后函数遍历整个list,再相加呢?good point,

如果所有的参数类型都一样,确实可以这么做,但是如果参数类型不一样呢?那怎么放到一个list里面?像C++这种强类型语言可能做不到吧,确实弱类型语言比如php,python等,确实可以这么做。根据我的理解,脚本语言等弱类型语言不需要变长参数吧,或者不重要。但是C++还是需要的,

用可变长模板就没这个问题了,就算参数类型不一样,只要对应的类型有对应的操作,就没问题。当然像上面的例子,如果没有重载+,那么编译的时候就报错,这不就是我们需要的吗?

附:

// VariableLengthParameters.cpp : Defines the entry point for the console application.
//  

#include "stdafx.h"  

#include "stdarg.h"
#include <typeinfo>  

double Sum(int count, ...)
{
    va_list ap;
    double sum = 0;  

    va_start(ap, count);  

    for (int i = 0; i < count; ++i)
    {
        double arg = va_arg(ap, double);
        sum += arg;
    }  

    va_end(ap);  

    return sum;
}  

template<typename T1, typename... T2> double Sum2(T1 p, T2... arg)
{
    double ret = p + Sum2(arg...);  

    return ret;
}  

double Sum2()
{
    return 0;
}  

template<typename... A> class BMW{};  

template<typename Head, typename... Tail>
class BMW<Head, Tail...> : public BMW<Tail...>
{
public:
    BMW()
    {  

        printf("type: %s\n", typeid(Head).name());
    }  

    Head head;
};  

template<> class BMW<>{};  

BMW<int, char, float> car;  

int _tmain(int argc, _TCHAR* argv[])
{
    double ret1 = Sum(4, 1.0, 2.0, 3.0, 4.0);
    double ret2 = Sum2(1.0, 2.0, 3.0, 4.0);  

    return 0;
}  

【转自】http://blog.csdn.net/zj510/article/details/36633603

时间: 2024-12-22 21:09:43

C++11新特性之五——可变参数模板的相关文章

jdk1.5新特性之-------&gt;可变参数

/* jdk1.5新特性之------->可变参数 需求: 定义一个函数做加法功能(函数做几个数据 的加法功能是不确定). 可变参数的格式: 数据类型... 变量名 可变参数要 注意的细节: 1. 如果一个函数 的形参使用上了可变参数之后,那么调用该方法的时候可以传递参数也可以不传递参数. 2. 可变参数实际上是一个数组对象. 3. 可变参数必须位于形参中的最后一个参数. 4. 一个函数最多只能有一个可变 参数,因为可变参数要位于形参中最后一个位置上. */ public class Demo4

JDK5新特性之 可变参数的方法

可变参数的方法:不知道这个方法该定义多少个参数 注意: > 参数实际上是数组 > 必须写在参数列表最后一个 package cn.itcast.day24.varparam; import java.lang.reflect.Type; /** * * JDK5新特性之 可变参数 * 定义方法时,不知道该定义多少个参数 * * 格式: * 修饰符 方法返回值 方法名(数据类型 ... 变量名){} * * 注意: * 可变参数实际上是一个数组 * 可变参数必须写在方法的参数列表的最后 * */

java新特性之可变参数

public class NewDemo01 {     public static void main(String[] args) {         System.out.print("No args(fun()):");         fun();         System.out.print("\n one args(fun()):");         fun(1);         System.out.print("\n five a

JDK5的新特性之可变参数&amp;Arrays.asList()方法

[代码] 1 package com.hxl; 2 3 import java.util.Arrays; 4 import java.util.List; 5 6 public class Test { 7 8 public static void main(String[] args) { 9 // 定义一个数组 10 String[] ss = { "Hello", "World", "Java", "Android",

JDK5 新特性之 可变参数的方法(2)---asList

> Arrays.asList(T - a)方法的使用 >UnsupportedOperationException分析     Arrays.asList(T - a)方法的使用 package cn.itcast.day24.varparam; import java.util.Arrays; import java.util.List; /** * * public static <T> List<T> asList(T... a):把数组转为集合 * * 注意:

C++中的可变参数模板

作者:Eli Bendersky http://eli.thegreenplace.net/2014/variadic-templates-in-c/ 回到C++11前夜,编写带有任意参数函数的唯一办法是使用可变参数函数,像printf,使用省略号语法(-)以及伴随的va_族的宏.如果你曾经使用这个方法编写代码,你会知道这有多累赘.除了变成类型不安全外(所有的类型解析必须在运行时在va_arg里通过显式转换来完成),要做对并不容易.Va_宏执行低级的内存操作,我看见过许多因为没有小心使用它们导致

C++11 新特性之 变长参数模板

template <typename ... ARGS> void fun(ARGS ... args) 首先明确几个概念 1,模板参数包(template parameter pack):它指模板参数位置上的变长参数,例如上面例子中的ARGS 2,函数参数包(function parameter pack):它指函数参数位置上的变长参数,例如上面例子中的args 一般情况下 参数包必须在最后面,例如: template <typename T, typename ... Args>

C++11 新特性之 tuple

我们在C++中都用过pair.pair是一种模板类型,其中包含两个数据值,两个数据的类型可以不同.pair可以使用make_pair构造 pair<int, string> p = make_pair(1, "a1"); 如果传入的参数为多个,那么就需要嵌套pair,如下代码 #include <iostream> #include <map> using namespace std; int main() { //<int, string,

【C++11】30分钟了解C++11新特性

作者:王选易,出处:http://www.cnblogs.com/neverdie/ 欢迎转载,也请保留这段声明.如果你喜欢这篇文章,请点[推荐].谢谢! 什么是C++11 C++11是曾经被叫做C++0x,是对目前C++语言的扩展和修正,C++11不仅包含核心语言的新机能,而且扩展了C++的标准程序库(STL),并入了大部分的C++ Technical Report 1(TR1)程序库(数学的特殊函数除外). C++11包括大量的新特性:包括lambda表达式,类型推导关键字auto.decl