第五篇[机器学习] 机器学习,逻辑回归come on

逻辑回归,简单的说,就是用sigmoid函数把连续函数归一化转化成离散的几个可能的结果。

逻辑回归的算法

最大似然法: 我自己的理解,最大似然法就是在你观测到某一系列事件出现的可能性之后,倒推该事件最可能的概率,这个最可能的概率会使这一系列事件发生的可能性无限接近我们观测到的可能性。

梯度下降法/随机梯度下降法

推荐看这些文章:

http://www.jianshu.com/p/1121509ac1dc

http://blog.csdn.net/zouxy09/article/details/8537620

http://blog.csdn.net/hjl240/article/details/52402912

在实际使用的时候,可以直接调用sklearn里面的LogisticRegression

from sklearn import cross_validation
from sklearn.linear_model import LogisticRegression  #逻辑回归
#Initialize our algorithm
alg=LogisticRegression(random_state=1)
#Compute the accuracy score for all the cross validation folds.(much simpler than what we did before!)
scores = cross_validation.cross_val_score(alg,titanic[predictors],titanic["Survived"],cv=3)
#Take the mean of the scores (because we have one for each fold)
print(scores.mean())

概率明显提升。

看一下其他数据的使用。

参考:http://blog.csdn.net/han_xiaoyang/article/details/49123419

最后总结:并不想总当搬运工,但是感觉人家都写的好好的,能让人看懂就好,以后慢慢自己再写一份,羞愧的低下了我的头。

时间: 2024-10-23 16:16:35

第五篇[机器学习] 机器学习,逻辑回归come on的相关文章

机器学习实战-逻辑回归

什么是回归? 假设现在有些数据点,我用直线对这些点进行拟合(该线叫做最佳拟合直线),这个拟合的过程就叫做回归. Logistic回归? 这里,Logistic回归进行分类的主要思想:根据现有数据对分类的边界线建立回归公式,以此边界线进行分类.这里的回归指的是最佳拟合,就是要找到边界线的回归公式的最佳拟合的参数集.训练时使用最优化算法寻找最佳拟合参数. 基于Logistic回归和Sigmoid函数的分类 对于边界线建立的回归函数,能够接受所有的输入然后预测出类别.例如,对于二分类的情况下,上述函数

机器学习 (三) 逻辑回归 Logistic Regression

文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人笔记,为我做个人学习笔记提供了很好的参考和榜样. § 3.  逻辑回归 Logistic Regression 1 分类Classification 首先引入了分类问题的概念——在分类(Classification)问题中,所需要预测的$y$是离散值.例如判断一封邮件是否属于垃圾邮件.判断一个在线交

机器学习:逻辑回归

************************************** 注:本系列博客是博主学习Stanford大学 Andrew Ng 教授的<机器学习>课程笔记.博主深感学过课程后,不进行总结很容易遗忘,根据课程加上自己对不明白问题的补充遂有此系列博客.本系列博客包括线性回归.逻辑回归.神经网络.机器学习的应用和系统设计.支持向量机.聚类.将维.异常检测.推荐系统及大规模机器学习等内容. ************************************** 逻辑回归 分类(C

机器学习二 逻辑回归作业

作业在这,http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2016/Lecture/hw2.pdf 是区分spam的. 57维特征,2分类问题.采用逻辑回归方法.但是上述数据集在kaggle中没法下载,于是只能用替代的方法了,下了breast-cancer-wisconsin数据集. 链接在这http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin

【机器学习】逻辑回归(Logistic Regression)

注:最近开始学习<人工智能>选修课,老师提纲挈领的介绍了一番,听完课只了解了个大概,剩下的细节只能自己继续摸索. 从本质上讲:机器学习就是一个模型对外界的刺激(训练样本)做出反应,趋利避害(评价标准). 1. 什么是逻辑回归? 许多人对线性回归都比较熟悉,但知道逻辑回归的人可能就要少的多.从大的类别上来说,逻辑回归是一种有监督的统计学习方法,主要用于对样本进行分类. 在线性回归模型中,输出一般是连续的,例如$$y = f(x) = ax + b$$,对于每一个输入的x,都有一个对应的y输出.模

机器学习算法 --- 逻辑回归及梯度下降

一.逻辑回归简介 logistic回归又称logistic回归分析,是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域. logistic回归是一种广义线性回归(generalized linear model),因此与多重线性回归分析有很多相同之处. 其公式如下: 其图像如下: 我们通过观察上面的图像可以发现,逻辑回归的值域为(0, 1),当输入为0时,其输出为0.5:当输入小于0,并且越来越小时,其输出越来越接近于0:相反的,当其输入大于0,并且越来越大时,其输出越来

机器学习:逻辑回归(基础理解)

逻辑回归(Logistic Regression) 一.行业算法应用率 具统计,2017年,除了军事和安全领域,逻辑回归算法是在其它所有行业使用最多了一种机器学习算法: Logistic Regression(逻辑回归) Decision Trees(决策树) Random Forests(随机森林) Neural Networks(人工神经网络 NNs)--深度学习算法 人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型

机器学习:逻辑回归(使用多项式特征)

一.基础 逻辑回归中的决策边界,本质上相当于在特征平面中找一条直线,用这条直线分割所有的样本对应的分类: 逻辑回归只可以解决二分类问题(包含线性和非线性问题),因此其决策边界只可以将特征平面分为两部分: 问题:使用直线分类太过简单,因为有很多情况样本的分类的决策边界并不是一条直线,如下图:因为这些样本点的分布是非线性的: 方案:引入多项式项,改变特征,进而更改样本的分布状态: 二.具体实现 1)模拟数据集 import numpy as np import matplotlib.pyplot a

scikit-learn机器学习(二)逻辑回归进行二分类(垃圾邮件分类),二分类性能指标,画ROC曲线,计算acc,recall,presicion,f1

数据来自UCI机器学习仓库中的垃圾信息数据集 数据可从http://archive.ics.uci.edu/ml/datasets/sms+spam+collection下载 转成csv载入数据 import matplotlib matplotlib.rcParams['font.sans-serif']=[u'simHei'] matplotlib.rcParams['axes.unicode_minus']=False import pandas as pd import numpy as