Python学习笔记 - yield 使用浅析

您可能听说过,带有 yield 的函数在 Python 中被称之为 generator(生成器),何谓 generator ?

我们先抛开 generator,以一个常见的编程题目来展示 yield 的概念。

如何生成斐波那契數列

斐波那契(Fibonacci)數列是一个非常简单的递归数列,除第一个和第二个数外,任意一个数都可由前两个数相加得到。用计算机程序输出斐波那契數列的前 N 个数是一个非常简单的问题,许多初学者都可以轻易写出如下函数:

清单 1. 简单输出斐波那契數列前 N 个数

1

2

3

4

5

6

def fab(max):

   n, a, b = 0, 0, 1

   while n < max:

       print b

       a, b = b, a + b

       n = n + 1

执行 fab(5),我们可以得到如下输出:


1

2

3

4

5

6

>>> fab(5)

1

1

2

3

5

结果没有问题,但有经验的开发者会指出,直接在 fab 函数中用 print 打印数字会导致该函数可复用性较差,因为 fab 函数返回 None,其他函数无法获得该函数生成的数列。

要提高 fab 函数的可复用性,最好不要直接打印出数列,而是返回一个 List。以下是 fab 函数改写后的第二个版本:

清单 2. 输出斐波那契數列前 N 个数第二版

1

2

3

4

5

6

7

8

def fab(max):

   n, a, b = 0, 0, 1

   L = []

   while n < max:

       L.append(b)

       a, b = b, a + b

       n = n + 1

   return L

可以使用如下方式打印出 fab 函数返回的 List:


1

2

3

4

5

6

7

8

>>> for n in fab(5):

...     print n

...

1

1

2

3

5

改写后的 fab 函数通过返回 List 能满足复用性的要求,但是更有经验的开发者会指出,该函数在运行中占用的内存会随着参数 max 的增大而增大,如果要控制内存占用,最好不要用 List

来保存中间结果,而是通过 iterable 对象来迭代。例如,在 Python2.x 中,代码:

清单 3. 通过 iterable 对象来迭代

1

for i in range(1000): pass

会导致生成一个 1000 个元素的 List,而代码:


1

for i in xrange(1000): pass

则不会生成一个 1000 个元素的 List,而是在每次迭代中返回下一个数值,内存空间占用很小。因为 xrange 不返回 List,而是返回一个 iterable 对象。

利用 iterable 我们可以把 fab 函数改写为一个支持 iterable 的 class,以下是第三个版本的 Fab:

清单 4. 第三个版本

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

class Fab(object):

   def __init__(self, max):

       self.max = max

       self.n, self.a, self.b = 0, 0, 1

   def __iter__(self):

       return self

   def next(self):

       if self.n < self.max:

           r = self.b

           self.a, self.b = self.b, self.a + self.b

           self.n = self.n + 1

           return r

       raise StopIteration()

Fab 类通过 next() 不断返回数列的下一个数,内存占用始终为常数:


1

2

3

4

5

6

7

8

>>> for n in Fab(5):

...     print n

...

1

1

2

3

5

然而,使用 class 改写的这个版本,代码远远没有第一版的 fab 函数来得简洁。如果我们想要保持第一版 fab 函数的简洁性,同时又要获得 iterable 的效果,yield 就派上用场了:

清单 5. 使用 yield 的第四版

1

2

3

4

5

6

7

8

9

def fab(max):

    n, a, b = 0, 0, 1

    while n < max:

        yield b

        # print b

        a, b = b, a + b

        n = n + 1

‘‘‘

第四个版本的 fab 和第一版相比,仅仅把 print b 改为了 yield b,就在保持简洁性的同时获得了 iterable 的效果。

调用第四版的 fab 和第二版的 fab 完全一致:


1

2

3

4

5

6

7

8

>>> for n in fab(5):

...     print n

...

1

1

2

3

5

简单地讲,yield 的作用就是把一个函数变成一个 generator,带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个 generator,调用 fab(5) 不会执行 fab 函数,而是返回一个 iterable 对象!在 for 循环执行时,每次循环都会执行 fab 函数内部的代码,执行到 yield b 时,fab 函数就返回一个迭代值,下次迭代时,代码从 yield b 的下一条语句继续执行,而函数的本地变量看起来和上次中断执行前是完全一样的,于是函数继续执行,直到再次遇到 yield。

也可以手动调用 fab(5) 的 next() 方法(因为 fab(5) 是一个 generator 对象,该对象具有 next() 方法),这样我们就可以更清楚地看到 fab 的执行流程:

清单 6. 执行流程

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

>>> f = fab(5)

>>> f.next()

1

>>> f.next()

1

>>> f.next()

2

>>> f.next()

3

>>> f.next()

5

>>> f.next()

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

StopIteration

当函数执行结束时,generator 自动抛出 StopIteration 异常,表示迭代完成。在 for 循环里,无需处理 StopIteration 异常,循环会正常结束。

我们可以得出以下结论:

一个带有 yield 的函数就是一个 generator,它和普通函数不同,生成一个 generator 看起来像函数调用,但不会执行任何函数代码,直到对其调用 next()(在 for 循环中会自动调用 next())才开始执行。虽然执行流程仍按函数的流程执行,但每执行到一个 yield 语句就会中断,并返回一个迭代值,下次执行时从 yield 的下一个语句继续执行。看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值。

yield 的好处是显而易见的,把一个函数改写为一个 generator 就获得了迭代能力,比起用类的实例保存状态来计算下一个 next() 的值,不仅代码简洁,而且执行流程异常清晰。

如何判断一个函数是否是一个特殊的 generator 函数?可以利用 isgeneratorfunction 判断:

清单 7. 使用 isgeneratorfunction 判断

1

2

3

>>> from inspect import isgeneratorfunction

>>> isgeneratorfunction(fab)

True

要注意区分 fab 和 fab(5),fab 是一个 generator function,而 fab(5) 是调用 fab 返回的一个 generator,好比类的定义和类的实例的区别:

清单 8. 类的定义和类的实例

1

2

3

4

5

>>> import types

>>> isinstance(fab, types.GeneratorType)

False

>>> isinstance(fab(5), types.GeneratorType)

True

fab 是无法迭代的,而 fab(5) 是可迭代的:


1

2

3

4

5

>>> from collections import Iterable

>>> isinstance(fab, Iterable)

False

>>> isinstance(fab(5), Iterable)

True

每次调用 fab 函数都会生成一个新的 generator 实例,各实例互不影响:


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

>>> f1 = fab(3)

>>> f2 = fab(5)

>>> print ‘f1:‘, f1.next()

f1: 1

>>> print ‘f2:‘, f2.next()

f2: 1

>>> print ‘f1:‘, f1.next()

f1: 1

>>> print ‘f2:‘, f2.next()

f2: 1

>>> print ‘f1:‘, f1.next()

f1: 2

>>> print ‘f2:‘, f2.next()

f2: 2

>>> print ‘f2:‘, f2.next()

f2: 3

>>> print ‘f2:‘, f2.next()

f2: 5

return 的作用

在一个 generator function 中,如果没有 return,则默认执行至函数完毕,如果在执行过程中 return,则直接抛出 StopIteration 终止迭代。

另一个例子

另一个 yield 的例子来源于文件读取。如果直接对文件对象调用 read() 方法,会导致不可预测的内存占用。好的方法是利用固定长度的缓冲区来不断读取文件内容。通过 yield,我们不再需要编写读文件的迭代类,就可以轻松实现文件读取:

清单 9. 另一个 yield 的例子

1

2

3

4

5

6

7

8

9

def read_file(fpath):

   BLOCK_SIZE = 1024

   with open(fpath, ‘rb‘) as f:

       while True:

           block = f.read(BLOCK_SIZE)

           if block:

               yield block

           else:

               return

以上仅仅简单介绍了 yield 的基本概念和用法,yield 在 Python 3 中还有更强大的用法,我们会在后续文章中讨论。

注:本文的代码均在 Python 2.7 中调试通过

本文转载自:https://www.ibm.com/developerworks/cn/opensource/os-cn-python-yield/

原文地址:https://www.cnblogs.com/wangwust/p/8457015.html

时间: 2024-11-01 20:16:27

Python学习笔记 - yield 使用浅析的相关文章

【Python学习笔记之二】浅谈Python的yield用法

在上篇[Python学习笔记之一]Python关键字及其总结中我提到了yield,本篇文章我将会重点说明yield的用法 在介绍yield前有必要先说明下Python中的迭代器(iterator)和生成器(constructor). 一.迭代器(iterator) 在Python中,for循环可以用于Python中的任何类型,包括列表.元祖等等,实际上,for循环可用于任何“可迭代对象”,这其实就是迭代器 迭代器是一个实现了迭代器协议的对象,Python中的迭代器协议就是有next方法的对象会前

python学习笔记之函数总结--高阶函数以及装饰器

python学习笔记之函数总结--高阶函数以及装饰器 Python特点: 1.不是纯函数式编程(允许变量存在): 2.支持高阶函数(可以传入函数作为变量): 3.支持闭包(可以返回函数): 4.有限度的支持匿名函数: 高阶函数: 1.变量可以指向函数: 2.函数的参数可以接收变量: 3.一个函数可以接收另一个函数作为参数: 下面我将示例一些函数的写法以及使用,并说明python中函数的特性: 1.基本的高阶函数示例: #!/usr/bin/env python def func():      

01-Python学习笔记-基础语法

Python标识符 -d           在解析时显示调试信息 -O           生成优化代码 ( .pyo 文件 ) -S           启动时不引入查找Python路径的位置 -v            输出Python版本号 -X           从 1.6版本之后基于内建的异常(仅仅用于字符串)已过时. -c cmd     执行 Python 脚本,并将运行结果作为 cmd 字符串. file           在给定的python文件执行python脚本. P

python 学习笔记 7 -- Python关键字总结

0.写在前面的话 学习一门语言最重要的功课是练习与复习,在<笨方法学Python>中第三十七节虽然没有教你任何内容,但是它提醒我们:"学了这么多,你还能记得多少?该复习了!" 下面我们就对这一节的第一部分"关键字"来做个复习: Python中的关键字包括如下: and       del        from      not      while    as        elif       global    or       with     

python &nbsp; 学习笔记 (核心)

python    学习笔记 (核心) Python解释器从头到尾一行接一行执行脚本 # -*- coding: UTF-8 -*-    //字符编码 不区分单引号和双引号,x='hello',x[0],x[-1]指最后一个字符,x[2:4]取子串, '''hello''' #hello三引号会保留文本输入时的换行符制表符等不需要转义,用于多行原样输入保存 'hello'+'world' #字符串拼接,'hello'*2 #字符串重复 help(fun) #帮助,help(module.met

OpenCV之Python学习笔记

OpenCV之Python学习笔记 直都在用Python+OpenCV做一些算法的原型.本来想留下发布一些文章的,可是整理一下就有点无奈了,都是写零散不成系统的小片段.现在看 到一本国外的新书<OpenCV Computer Vision with Python>,于是就看一遍,顺便把自己掌握的东西整合一下,写成学习笔记了.更需要的朋友参考. 阅读须知: 本文不是纯粹的译文,只是比较贴近原文的笔记:         请设法购买到出版社出版的书,支持正版. 从书名就能看出来本书是介绍在Pytho

python学习笔记12-模块使用

python学习笔记12-模块使用 模块os,sys 什么是模块? 模块os,sys 模块是Python组织代码的一种基本方式 一个Python脚本可以单独运行,也可以导入到另外一个脚本运行,用import hello语句来导入,不用加入.py 什么是Python的 包? Python的模块可以按照目录组织为包 创建一个包的步骤: 创建一个名字为包名的目录 在改目录下创建一个__init__.py文件 根据需要,在该目录下存放脚本文件或已编译的扩展及子包 import pack.m1,pack.

python学习笔记2—python文件类型、变量、数值、字符串、元组、列表、字典

python学习笔记2--python文件类型.变量.数值.字符串.元组.列表.字典 一.Python文件类型 1.源代码 python源代码文件以.py为扩展名,由pyton程序解释,不需要编译 [[email protected] day01]# vim 1.py #!/usr/bin/python        print 'hello world!' [[email protected] day01]# python 1.py hello world! 2.字节代码 Python源码文件

Python学习笔记--未经排版

Python 学习笔记 Python中如何做到Print() 不换行 答:Print("输出内容",end='不换行的分隔内容'),其中end=后面为2个单引号 注:在Python 2.x中,Print "输出内容", 即在输出内容后加一逗号 Python中 is 和 == 的区别 答:Python中的对象包含三要素:id.type.value 其中id用来唯一标识一个对象,type标识对象的类型,value是对象的值 is判断的是a对象是否就是b对象,是通过id来