Flink容错机制

1、State

所谓的Distributed Snapshot,就是为了保存分布式系统的State,那么首先我们需要定义清楚什么是分布式系统的State。考虑到上述分布式模型的定义,分布式系统State同样是由“进程状态”和“通道状态”组成的

  • Event:分布式系统中发生的一个事件,在类似于Flink这样的分布式计算系统中从Source输入的新消息相当于一个事件。
  • 进程状态:包含一个初始状态(initial state),和持续发生的若干Events。初始状态可以理解为Flink中刚启动的计算节点,计算节点每处理一条Event,就转换到一个新的状态。
  • 通道状态:我们用在通道上传输的消息(Event)来描述一个通道的状态。

在某一个时刻的某分布式系统的所有进程和所有通道状态的组合,就是这个分布式系统的全局状态。基于上述的双进程双通道的最简分布式系统,为了描述算法,可以设计一个“单令牌状态”转换系统,两个进程通过接收和发出令牌,会在S0、S1两个State之间转换,整个分布式系统则会在如下所示的4种全局状态(Global State)之间转换。

    

Flink 分布式Checkpointing是通过Asynchronous Barrier Snapshots的算法实现的,该算法借鉴了Chandy-Lamport算法的主要思想,同时做了一些改进,这些改进在论文"Lightweight Asynchronous Snapshots for Distributed Dataflows"中进行了详尽的描述。

在Asynchronous Barrier Snapshots(ABS)算法中用Barrier代替了C-L算法中的Marker,针对DAG的ABS算法执行流程如下所示:

  1. Barrier周期性的被注入到所有的Source中,Source节点看到Barrier后,会立即记录自己的状态,然后将Barrier发送到Transformation Operator。
  2. 当Transformation Operator从某个input channel收到Barrier后,它会立刻Block住这条通道,直到所有的Operator都收到Barrier,此时该Operator就会记录自身状态,并向自己的所有output channel广播Barrier。
  3. Sink接受Barrier的操作流程与Transformation Operator一样。当所有的Barrier都到达Sink之后,并且所有的Sink也完成了Checkpoint,这一轮Snapshot就完成了。

    

注意:

(1)、出现一个Barrier,在该Barrier之前出现的记录都属于该Barrier对应的Snapshot,在该Barrier之后出现的记录属于下一个Snapshot。来自不同Snapshot多个Barrier可能同时出现在数据流中,也就是说同一个时刻可能并发生成多个Snapshot。当一个中间(Intermediate)Operator接收到一个Barrier后,它会发送Barrier到属于该Barrier的Snapshot的数据流中,等到Sink Operator接收到该Barrier后会向Checkpoint Coordinator确认该Snapshot,直到所有的Sink Operator都确认了该Snapshot,才被认为完成了该Snapshot

如下图:

    

(2)、数据对齐

当Operator接收到多个输入的数据流时,需要在Snapshot Barrier中对数据流进行排列对齐:

  ① Operator从一个incoming Stream接收到Snapshot Barrier n,然后暂停处理,直到其它的incoming Stream的Barrier n(否则属于2个Snapshot的记录就混在一起了)到达该Operator

  ② 接收到Barrier n的Stream被临时搁置,来自这些Stream的记录不会被处理,而是被放在一个Buffer中。

  ③ 一旦最后一个Stream接收到Barrier n,Operator会emit所有暂存在Buffer中的记录,然后向Checkpoint Coordinator发送Snapshot n。

  ④ 继续处理来自多个Stream的记录

    

(3)、在这个算法中Block Input实际上是有负面效果的,一旦某个input channel发生延迟,Barrier迟迟未到,这会导致Transformation Operator上的其它通道全部堵塞,系统吞吐大幅下降。但是这么做的一个最大的好处就是能够实现Exactly Once。不过Flink还是提供了选项,可以关闭Exactly once并仅保留at least once,以提供最大限度的吞吐能力。

原文地址:https://www.cnblogs.com/liuzhongfeng/p/8666597.html

时间: 2024-10-17 02:51:22

Flink容错机制的相关文章

Flink| 容错机制

一致性检查点(checkpoint) 从检查点恢复状态 Flink检查点算法 保存点(save point) 1. 一致性检查点(checkpoint) Flink--有状态的流式处理 如上图sum_even (2+4),sum_odd(1 + 3 + 5),5这个数据之前的都处理完了,就出保存一个checkpoint:Source任务保存状态5,sum_event任务保存状态6,sum_odd保存状态是9:这三个保存到状态后端中就构成了CheckPoint: Flink故障恢复机制的核心,就是

数据流容错机制

该文档翻译自Data Streaming Fault Tolerance,文档描述flink在流式数据流图上的容错机制. ------------------------------------------------------------------------------------------------- 一.介绍 flink提供了可以一致地恢复数据流应用的状态的容错机制,该机制保证即使在错误发生后,反射回数据流记录的程序的状态操作最终仅执行一次.值得注意的是,该保证可以降低为“至少执

Flink状态管理和容错机制介绍

本文主要内容如下: 有状态的流数据处理: Flink中的状态接口: 状态管理和容错机制实现: 阿里相关工作介绍: 一.有状态的流数据处理# 1.1.什么是有状态的计算# 计算任务的结果不仅仅依赖于输入,还依赖于它的当前状态,其实大多数的计算都是有状态的计算. 比如wordcount,给一些word,其计算它的count,这是一个很常见的业务场景.count做为输出,在计算的过程中要不断的把输入累加到count上去,那么count就是一个state. 1.2.传统的流计算系统缺少对于程序状态的有效

Flink 源码解析 —— 深度解析 Flink 序列化机制

Flink 序列化机制 https://t.zsxq.com/JaQfeMf 博客 1.Flink 从0到1学习 -- Apache Flink 介绍 2.Flink 从0到1学习 -- Mac 上搭建 Flink 1.6.0 环境并构建运行简单程序入门 3.Flink 从0到1学习 -- Flink 配置文件详解 4.Flink 从0到1学习 -- Data Source 介绍 5.Flink 从0到1学习 -- 如何自定义 Data Source ? 6.Flink 从0到1学习 -- Da

ack是什么,如何使用Ack机制,如何关闭Ack机制,基本实现,STORM的消息容错机制,Ack机制

1.ack是什么 ack 机制是storm整个技术体系中非常闪亮的一个创新点. 通过Ack机制,spout发送出去的每一条消息,都可以确定是被成功处理或失败处理, 从而可以让开发者采取动作.比如在Meta中,成功被处理,即可更新偏移量,当失败时,重复发送数据. 因此,通过Ack机制,很容易做到保证所有数据均被处理,一条都不漏. 另外需要注意的,当spout触发fail动作时,不会自动重发失败的tuple,需要spout自己重新获取数据,手动重新再发送一次 ack机制即, spout发送的每一条消

RDD之七:Spark容错机制

引入 一般来说,分布式数据集的容错性有两种方式:数据检查点和记录数据的更新. 面向大规模数据分析,数据检查点操作成本很高,需要通过数据中心的网络连接在机器之间复制庞大的数据集,而网络带宽往往比内存带宽低得多,同时还需要消耗更多的存储资源. 因此,Spark选择记录更新的方式.但是,如果更新粒度太细太多,那么记录更新成本也不低.因此,RDD只支持粗粒度转换,即只记录单个块上执行的单个操作,然后将创建RDD的一系列变换序列(每个RDD都包含了他是如何由其他RDD变换过来的以及如何重建某一块数据的信息

架构师之路--搜索业务和技术介绍及容错机制

今天和搜索部门一起做了一下MQ的迁移,顺便交流一下业务和技术.发现现在90后小伙都挺不错.我是指能力和探究心.我家男孩,不招女婿. 在前面的文章中也提到,我们有媒资库(乐视视频音频本身内容)和全网作品库(外部视频音频内容),数据量级都在千万级.我们UV,PV,CV,VV都是保密的.所以作为一个合格的员工来说………………数值我也不知道.总之,这些数据作为最终数据源,要走一个跨多个部门的工作流才最终出现在用户点击搜索按钮出现的搜索框里.大体流程图如下: 这个流程图之所以没像以往一样手绘,嗯,那是因为

【Spark】Spark容错机制

引入 一般来说,分布式数据集的容错性有两种方式:数据检查点和记录数据的更新. 面向大规模数据分析,数据检查点操作成本很高,需要通过数据中心的网络连接在机器之间复制庞大的数据集,而网络带宽往往比内存带宽低得多,同时还需要消耗更多的存储资源. 因此,Spark选择记录更新的方式.但是,如果更新粒度太细太多,那么记录更新成本也不低.因此,RDD只支持粗粒度转换,即只记录单个块上执行的单个操作,然后将创建RDD的一系列变换序列(每个RDD都包含了他是如何由其他RDD变换过来的以及如何重建某一块数据的信息

RDD的容错机制

RDD的容错机制 RDD实现了基于Lineage的容错机制.RDD的转换关系,构成了compute chain,可以把这个compute chain认为是RDD之间演化的Lineage.在部分计算结果丢失时,只需要根据这个Lineage重算即可. 图1中,假如RDD2所在的计算作业先计算的话,那么计算完成后RDD1的结果就会被缓存起来.缓存起来的结果会被后续的计算使用.图中的示意是说RDD1的Partition2缓存丢失.如果现在计算RDD3所在的作业,那么它所依赖的Partition0.1.3