jupyter Notebook环境搭建

1、什么是jupyter notebook

  jupyter notebook是一种 Web 应用,能让用户将说明文本、数学方程、代码和可视化内容全部组合到一个易于共享的文档中。它可以直接在代码旁写出叙述性文档,而不是另外编写单独的文档。也就是它可以能将代码、文档等这一切集中到一处,让用户一目了然。

Jupyter这个名字是它要服务的三种语言的缩写:Julia,PYThon和R,这个名字与“木星(jupiter)”谐音。Jupyter Notebook 已迅速成为数据分析,机器学习的必备工具。因为它可以让数据分析师集中精力向用户解释整个分析过程。我们可以通过Jupyter notebook写出了我们的学习笔记。

2、jupyter notebook安装

  对于新手,这里强力推荐使用安装Anaconda进行jupyter安装。Anaconda则是一个打包的集合,里面预装好了conda、某个版本的python、众多packages、科学计算工具等等,所以也称为Python的一种发行版。可方便地安装Python,Jupyter Notebook以及用于科学计算和数据科学的其他常用软件包。

安装如下:

安装步骤:

1、官网下载Anaconda。建议下载Anaconda的最新Python 3版本。

2、按照安装说明一步步安装即可。

值得注意的是,安装步骤中有一个地方需要确认:

  第一个勾是是否把Anaconda加入环境变量,这涉及到能否直接在cmd中使用conda、jupyter、ipython等命令,推荐打勾,如果不打勾话问题也不大,可以在之后使用Anaconda提供的命令行工具进行操作;第二个是是否设置Anaconda所带的Python 3.6为系统默认的Python版本,这个自己看着办,问题不大。

  对于有经验的用户,或者说linux用户,可以使用Python的包管理器pip安装Jupyter ,而不是Anaconda。下面为安装步骤。

1、确保你是最新的版本; 旧版本可能会遇到一些依赖问题:

pip3 install --upgrade pip

2、使用以下命令安装Jupyter Notebook:

pip3 install jupyter

  

3、anaconda配置jupyter的默认启动路径

首先了解一下anaconda navigator,从开始菜单中,以管理员方式运行Anaconda Navigator桌面应用程序。

当Navigator启动时,它会验证是否安装了Anaconda。如果运行成功,会显示如下界面:

home目录中是显示的我们已经安装了的软件,后面我们可以通过这里直接启动需要用到的软件。

environment目录下展示的是当前环境及当前我们已经安装了的包,第一次进入这个界面会询问你是否修改路径,你可以将路径修改到你的project项目目录下,当然你也可以通过channels修改路径。这里先不修改。同时你还可以通过create创建或则导入新的环境。

poject目录下你可以创建工程或者导入已经存在了的项目:

Learning目录下就是一些相关的教程链接。

community即一些相关的交流论坛,方便开发者进行交流。

在开始菜单中以管理员身份运行Anaconda Prompt,这里就是启动conda环境管理器。

在Anaconda Prompt for Windows中使用conda命令行命令可以完成一系列的操作。关于conda的命令行请参考官方文档,只做一个大概的介绍:

(1)环境创建及管理

下面是我们需要安装Python 3.4的操作

# 创建一个名为python3.4的环境,指定Python版本是3.4(不用管是3.4.x,conda会为我们自动寻找3.4.x中的最新版本)
conda create --name python34 python=3.4

# 安装好后,使用activate激活某个环境
activate python34 # for Windows
source activate python34 # for Linux & Mac
# 激活后,会发现terminal输入的地方多了python34的字样,实际上,此时系统做的事情就是把默认2.7环境从PATH中去除,再把3.4对应的命令加入PATH

# 此时,再次输入
python --version
# 可以得到`Python 3.4.5 :: Anaconda 4.1.1 (64-bit)`,即系统已经切换到了3.4的环境

# 如果想返回默认的python 2.7环境,运行
deactivate python34 # for Windows
source deactivate python34 # for Linux & Mac

# 删除一个已有的环境
conda remove --name python34 --all

(2)Conda的包管理

Conda的包管理就比较好理解了,这部分功能与pip类似。例如,如果需要安装scipy:

# 安装scipy
conda install scipy
# conda会从从远程搜索scipy的相关信息和依赖项目,对于python 3.4,conda会同时安装numpy和mkl(运算加速的库)

# 查看已经安装的packages
conda list
# 最新版的conda是从site-packages文件夹中搜索已经安装的包,不依赖于pip,因此可以显示出通过各种方式安装的包

conda的一些常用操作如下:

# 查看当前环境下已安装的包
conda list

# 查看某个指定环境的已安装包
conda list -n python34

# 查找package信息
conda search numpy

# 安装package
conda install -n python34 numpy
# 如果不用-n指定环境名称,则被安装在当前活跃环境
# 也可以通过-c指定通过某个channel安装

# 更新package
conda update -n python34 numpy

# 删除package
conda remove -n python34 numpy

前面已经提到,conda将conda、python等都视为package,因此,完全可以使用conda来管理conda和python的版本,例如

# 更新conda,保持conda最新
conda update conda

# 更新anaconda
conda update anaconda

# 更新python
conda update python
# 假设当前环境是python 3.4, conda会将python升级为3.4.x系列的当前最新版本

补充:如果创建新的python环境,比如3.4,运行conda create -n python34 python=3.4之后,conda仅安装python 3.4相关的必须项,如python, pip等,如果希望该环境像默认环境那样,安装anaconda集合包,只需要:

# 在当前环境下安装anaconda包集合
conda install anaconda

# 结合创建环境的命令,以上操作可以合并为
conda create -n python34 python=3.4 anaconda
# 也可以不用全部安装,根据需求安装自己需要的package即可

(3)设置国内镜像

如果需要安装很多packages,你会发现conda下载的速度经常很慢,因为Anaconda.org的服务器在国外。所幸的是,清华TUNA镜像源有Anaconda仓库的镜像,我们将其加入conda的配置即可:

# 添加Anaconda的TUNA镜像
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
# TUNA的help中镜像地址加有引号,需要去掉

# 设置搜索时显示通道地址
conda config --set show_channel_urls yes

执行完上述命令后,会生成~/.condarc(Linux/Mac)或C:UsersUSER_NAME.condarc文件,记录着我们对conda的配置,直接手动创建、编辑该文件是相同的效果。

4)共享环境

共享环境非常有用,它能让其他人安装你的代码中使用的所有包,并确保这些包的版本正确。

你可以在你当前的环境中终端中使用

conda env export > environment.yaml

将你当前的环境保存到文件中包保存为YAML文件(包括Pyhton版本和所有包的名称)。

命令的第一部分 conda env export 用于输出环境中的所有包的名称(包括 Python 版本)

在 GitHub 上共享代码时,最好同样创建环境文件并将其包括在代码库中。这能让其他人更轻松地安装你的代码的所有依赖项。

导出的环境文件,在其他电脑环境中如何使用呢?

首先在conda中进入你的环境,比如activate py3

然后在使用以下命令更新你的环境:

#其中-f表示你要导出文件在本地的路径,所以/path/to/environment.yml要换成你本地的实际路径
conda env update -f=/path/to/environment.yml

对于不使用 conda 的用户,通常可以使用

pip freeze > environment.txt

  将一个 txt文件导出并将环境包括在其中,然后别人就可以使用

pip install -r /path/requirements.txt

安装该项目实际需要的包(其中/path/requirements.txt是该文件在你电脑上的实际路径)。

4、jupyter Notebook默认启动路径修改

下面讲解的是如何更改jupyter的默认启动路径。 在软件页打开jupyter Notebook

会打开一个浏览器界面和一个cmd命令界面:

这里浏览器打开的是Notebook Dashboard,它将显示笔记本服务器启动目录中的笔记本,文件和子目录列表。值得注意的是,这里打开的是C:\Users\Administrator,这是因为jupyter notebook命令会在电脑本地以默认配置启动jupyter服务,windows下可以通过以下方式修改默认路径

运行Anaconda Prompt后,输入指令

jupyter notebook --generate-config 

生成jupyter的配置文件。

找到文件并打开 ,在第214行找到

#c.NotebookApp.notebook_dir = ‘‘

将其改为

c.NotebookApp.notebook_dir = ‘H:\Jupyter‘

这里的H:\Jupyter即为我们想要设置的路径。这里注意:第一、文件夹必须先创建好,不然会jupyter初始化时会找不到目录 第二、要取消注释,c前面的#要去掉。 第三、要注意文件名不可以是数字

保存并关闭。

在开始菜单中打开jupter notebook属性

因为%USERPROFILE%会使得jupyter打开固定地址。 所以将目标后面的%USERPROFILE%删除,并将起始位置改为我们期望的路径,结果如下:

运行Jupter Notebook可以看到如下结果:

  

参考资料:

Anaconda document

最省心的Python版本和第三方库管理——初探Anaconda

初学python者自学anaconda的正确姿势是什么??

Conda Docs

Anaconda 下 Jupyter 更改默认启动路径方法

如何在Linux系统搭建jupyter notebook

原文地址:https://www.cnblogs.com/noticeable/p/9006861.html

时间: 2024-11-11 06:34:46

jupyter Notebook环境搭建的相关文章

ipython notebook环境搭建

默认已经装好python基本环境,再进行下面步骤: 1. 下载安装IPython:  c:>pip.exe install ipython 系统就会去网上寻找ipython的包, 进行下载及安装. 等待差不多5分钟, 整个安装就完成了, 并且还把pyreadline也安装了. ipython3.exe被安装在c:\Python33\Scripts下面, 因为前面添加过环境变量的路径支持, 所以可以直接输入: c:>ipython3.exe 2. 尝试Notebook, 还需要下载一些其它咚咚

01 关于jupyter的环境安装

jupyter notebook环境安装 一.什么是Jupyter Notebook? 1. 简介 Jupyter Notebook是基于网页的用于交互计算的应用程序.其可被应用于全过程计算:开发.文档编写.运行代码和展示结果.——Jupyter Notebook官方介绍 简而言之,Jupyter Notebook是以网页的形式打开,可以在网页页面中直接编写代码和运行代码,代码的运行结果也会直接在代码块下显示.如在编程过程中需要编写说明文档,可在同一个页面中直接编写,便于作及时的说明和解释. 2

搭建Python3的jupyter notebook服务器

摘要:搭建Python3 jupyter notebook. 激活Python3后,进入Python交互环境 1. 登陆远程服务器 2. 生成配置文件 1. $jupyter notebook --generate-config 3. 生成密码 打开ipython,创建一个密文的密码: 1. In [1]: from notebook.auth import passwd 2. In [2]: passwd() 3. Enter password: 4. Verify password: 5. 

(数据科学学习手札81)conda+jupyter玩转数据科学环境搭建

本文示例yaml文件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 我们在使用Python进行数据分析时,很多时候都在解决环境搭建的问题,不同版本.依赖包等问题经常给数据科学工作流的搭建和运转带来各种各样令人头疼的问题,本文就将基于笔者自己摸索出的经验,以geopandas环境的搭建为例,教你使用conda+jupyter轻松搞定环境的搭建.管理与拓展. 图1 2 虚拟环境的搭建与使用 2.1 使用con

在服务器搭建Jupyter notebook

安装 Jupyter Notebook (这里虽然是对centos和Python2的,但是在Ubuntu16.04,Python3同样可以照着弄) Jupyter Notebook 简介 Jupyter Notebook 是一个开源的 Web 应用程序,可以用来创建和共享包含动态代码.方程式.可视化及解释性文本的文档. 其应用于包括:数据整理与转换,数值模拟,统计建模,机器学习等等. 更多信息请见 官网 . 检查 Python 环境 CentOS 7.2 中默认集成了 Python 2.7,可以

Ubuntu18.04 + CUDA9.0 + cuDNN7.3 + Tensorflow-gpu-1.12 + Jupyter Notebook深度学习环境配置

目录 一.Ubuntu18.04 LTS系统的安装 1. 安装文件下载 2. 制作U盘安装镜像文件 3. 开始安装 二.设置软件源的国内镜像 1. 设置方法 2.关于ubuntu镜像的小知识 三.Nvidia显卡驱动的安装 1. 首先查看显卡型号和推荐的显卡驱动 2. 安装nvidia-390版本驱动 3. 重启系统,可以查看安装是否成功 四.CUDA9.0的安装 1. CUDA版本选择 2. 安装CUDA9.0 3. 设置环境变量 五.cuDNN7.3的安装 六.Tensorflow-1.12

Anaconda下的 Jupyter Notebook 安装 多python环境

装完 Anaconda 会自带一个pyhon环境   也会自带Jupyter Notebook   可以点击开始中的Jupyter Notebook 打开 浏览器 我这里是 3.x 想要装个2.7 的 并且互相切换 如下 点击 Anaconda Prompt 进入控制台 (没配环境变量的进入 安装的根目录下) 第一 输入  conda create -n py27 python=2.7          [其中py27是你随便起的  2.7 是版本]   之后 直接输入y 第二 输入 activ

python3工作环境部署+spyder3+jupyter notebook

1.python3安装 1)官网去下载python3.7版本,双击安装,只要注意勾选写到PATH就行,其它直接NEXT. 2)安装完成,CMD键入 python 回车,跳出python界面就是成功. 2.spyder3安装 1)因为个人觉得spyder比pychar启动快速,调试方便,所以安装此工具,spyder还自带有Ipython. 2)windows标志上右键,运行powershell(管理员) 3)键入 pip install spyder 回车,等待安装完成. 4)安装完成,power

如何让Jupyter Notebook支持虚拟运行环境?

参考:https://www.jianshu.com/p/afea092dda1d 需要在Anaconda里安装一个插件. 回到终端下面,用C-c退出目前正在运行的Jupyter Notebook Server,然后执行: conda install nb_conda 再重新开启Jupyter Notebook: jupyter notebook 原文地址:https://www.cnblogs.com/liangyuhuidespace/p/11326495.html