[ZJOI2010][bzoj1834] 网络扩容 [费用流]

题面

传送门

思路

第一问:无脑网络流跑一波

第二问:

先考虑一个贪心的结论:扩容出来的扩容流量一定要跑满

证明显然

因此我们可以把扩容费用可以换个角度思考,变成增加一点流量,花费W的费用

这样,我们就得到了一个最小费用流的模型

只要在原图基础上,对于每个原图边,加一条费用为W,无限容量的边,而原图中的所有边费用为0,就可以模拟原题需要的情况了

最后一个问题:流量增加限制K怎么处理?

我们虽然可以用spfa的费用流,一次一次增加,直到K,但是这样也太慢chou了吧?

不怕,我们加一个n+1号点,作为第二问的费用流汇点,在n到n+1之间连一条边,费用为0,流量为第一问的最大流流量加上K

注意:上述算法是对于第二问建一个新图来跑的,对于在残量网络上瞎搞的方法,由于本人水平有限,并无法很好地证明正确性

我的算法,时间复杂度大概会多一个$O\left(m\right)$,再加上一点常数

同时因为我是zkw费用流实现的最大流,所以大概稍慢....?

其实应该是一样的吧!

Code:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define inf 1e9
using namespace std;
inline int read(){
    int re=0,flag=1;char ch=getchar();
    while(ch>'9'||ch<'0'){
        if(ch=='-') flag=-1;
        ch=getchar();
    }
    while(ch>='0'&&ch<='9') re=(re<<1)+(re<<3)+ch-'0',ch=getchar();
    return re*flag;
}
int n,m,cnt=-1,ans,K,first[1010],dis[1010],vis[1010];
struct edge{
    int to,next,w,cap;
}a[25010];
inline void add(int u,int v,int w,int cap){
    a[++cnt]=(edge){v,first[u],w,cap};first[u]=cnt;
    a[++cnt]=(edge){u,first[v],-w,0};first[v]=cnt;
}
bool spfa(int s,int t){
    int q[5010],head=0,tail=1,u,v,w,i;
    memset(dis,-1,sizeof(dis));memset(vis,0,sizeof(vis));
    q[0]=t;dis[t]=0;vis[t]=1;
    while(head<tail){
        u=q[head++];vis[u]=0;
        for(i=first[u];~i;i=a[i].next){
            v=a[i].to;w=a[i].w;
            if(a[i^1].cap&&((dis[v]==-1)||(dis[v]>dis[u]-w))){
                dis[v]=dis[u]-w;
                if(!vis[v]) q[tail++]=v,vis[v]=1;
            }
        }
    }
    return ~dis[s];
}
int dfs(int u,int t,int limit){
    if(u==t){vis[t]=1;return limit;}
    if(!limit){vis[u]=1;return 0;}
    int i,v,f,flow=0,w;vis[u]=1;
    for(i=first[u];~i;i=a[i].next){
        v=a[i].to;w=a[i].w;
        if((dis[v]==dis[u]-w)&&(!vis[v])&&a[i].cap){
            f=dfs(v,t,min(limit,a[i].cap));if(!f) continue;
            a[i].cap-=f;a[i^1].cap+=f;
            flow+=f;limit-=f;ans+=a[i].w*f;
            if(!limit) return flow;
        }
    }
    return flow;
}
int zkw(int s,int t){//zkw费用流
    int re=0;
    while(spfa(s,t)){
        vis[t]=1;
        while(vis[t]){
            memset(vis,0,sizeof(vis));
            re+=dfs(s,t,inf);
            //cout<<"cur re="<<re<<"\n";
        }
    }
    return re;
}
int cost[5010],u[5010],v[5010],cap[5010];
int main(){
    memset(first,-1,sizeof(first));
    int i,maxflow;
    n=read();m=read();K=read();
    for(i=1;i<=m;i++){
        u[i]=read();v[i]=read();cap[i]=read();cost[i]=read();
        add(u[i],v[i],0,cap[i]);
    }
    printf("%d ",maxflow=zkw(1,n));//maxflow要记录下来,后面有用
    memset(first,-1,sizeof(first));memset(a,0,sizeof(a));cnt=-1;//清理原图,重新建图
    for(i=1;i<=m;i++){
        add(u[i],v[i],0,cap[i]);
        add(u[i],v[i],cost[i],inf);
    }
    add(n,n+1,0,maxflow+K);
    zkw(1,n+1);
    printf("%d",ans);
}

原文地址:https://www.cnblogs.com/dedicatus545/p/8732901.html

时间: 2024-11-05 14:41:09

[ZJOI2010][bzoj1834] 网络扩容 [费用流]的相关文章

bzoj 1834: [ZJOI2010]network 网络扩容 -- 最大流+费用流

1834: [ZJOI2010]network 网络扩容 Time Limit: 3 Sec  Memory Limit: 64 MB Description 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用.求: 1. 在不扩容的情况下,1到N的最大流: 2. 将1到N的最大流增加K所需的最小扩容费用. Input 输入文件的第一行包含三个整数N,M,K,表示有向图的点数.边数以及所需要增加的流量. 接下来的M行每行包含四个整数u,v,C,W,表示一

【bzoj1834】[ZJOI2010]network 网络扩容 最大流+最小费用流

题目描述 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用.求: 1. 在不扩容的情况下,1到N的最大流: 2. 将1到N的最大流增加K所需的最小扩容费用. 输入 输入文件的第一行包含三个整数N,M,K,表示有向图的点数.边数以及所需要增加的流量. 接下来的M行每行包含四个整数u,v,C,W,表示一条从u到v,容量为C,扩容费用为W的边. 输出 输出文件一行包含两个整数,分别表示问题1和问题2的答案. 样例输入 5 8 2 1 2 5 8 2 5 9

luogu P2604 [ZJOI2010]网络扩容 |费用流

题目描述 给定一张有向图,每条边都有一个容量\(C\)和一个扩容费用\(W\).这里扩容费用是指将容量扩大1所需的费用.求: 1. 在不扩容的情况下,1到N的最大流: 2. 将1到N的最大流增加K所需的最小扩容费用. 输入格式 输入文件的第一行包含三个整数\(N,M,K\),表示有向图的点数.边数以及所需要增加的流量. 接下来的M行每行包含四个整数\(u,v,C,W\),表示一条从u到v,容量为C,扩容费用为W的边. 输出格式 输出文件一行包含两个整数,分别表示问题1和问题2的答案. 利用残余网

bzoj1834: [ZJOI2010]network 网络扩容

努力看了很久样例一直过不了...然后各种输出中间过程啊巴拉巴拉弄了1h,没办法了...然后突然想到啊原来的边可以用啊为什么不用...于是A了...感人肺腑 #include<cstdio> #include<cstring> #include<queue> #include<iostream> #include<algorithm> using namespace std; #define rep(i,n) for(int i=1;i<=n

【最大流】【费用流】bzoj1834 [ZJOI2010]network 网络扩容

引用题解: 最大流+费用流. 第一问最大流即可. 第二问为“最小费用最大流”. 由题意,这一问的可转化为在上一问的“残量网络”上,扩大一些边的容量,使能从新的图中的最大流为k. 那么易得:对于还有剩余流量的边,走过他们的费用为0.而“增加流量”可变为:对残留网络上的每一条边建一条容量是∞费用是w的边.这表示从这些边走,每一流量的费用为w,这就符合题意了. 最后建一个超级源点,从超级源向1建一条容量为k,费用为0的边,就可进行最小费用最大流算法. #include<cstdio> #includ

【BZOJ】1834: [ZJOI2010]network 网络扩容(最大流+费用流)

我又思考人生了T_T,nd的数组开小了,一直wa,调了一个小时才发现啊!!!!!我一直以为我的isap错了T_T,可是完全没错啊!!!! 这题其实第一个问很简单,跑一次最大流即可.第二个问就是在跑完最大流的残量网络上每条边都扩充容量为oo,费用为边的费用,然后设个超级源连一条容量为k的边到点1,再跑一次费用流即可. 理由很简单,自己想,我就不说了. #include <cstdio> #include <cstring> #include <cmath> #includ

[ZJOI2010]网络扩容 (最大流 + 费用流)

题目描述 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用.求: 1. 在不扩容的情况下,1到N的最大流: 2. 将1到N的最大流增加K所需的最小扩容费用. 输入输出格式 输入格式: 输入文件的第一行包含三个整数N,M,K,表示有向图的点数.边数以及所需要增加的流量. 接下来的M行每行包含四个整数u,v,C,W,表示一条从u到v,容量为C,扩容费用为W的边. 输出格式: 输出文件一行包含两个整数,分别表示问题1和问题2的答案. 输入输出样例 输入样例#

[BZOJ 1834][ZJOI2010]network 网络扩容(费用流)

Description 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用.求: 1. 在不扩容的情况下,1到N的最大流: 2. 将1到N的最大流增加K所需的最小扩容费用. Solution 先求出最大流maxflow 求最小扩容费用的话,对于每一条边,建一条容量为c费用为0的边,再建一条容量为INF费用为w的边 跑费用流求流入maxflow+k的费用 #include<iostream> #include<cstdio> #include

BZOJ 1834 ZJOI2010 network 网络扩容 Dinic+EK费用流

题目大意:给定一个n个点m条边的无向图,每条边有一个扩容费用c,代表每扩容1流量的花费,求最大流及将最大流扩大k的最小费用 第一问直接跑最大流 第二问将每条边的起始点向终点连接一条流量为正无穷.费用为c的边 然后将n向汇点连一条流量为ans+k 费用为0的边 跑最小费用最大流即可 #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #define M 5010 #