【慕课网实战】Spark Streaming实时流处理项目实战笔记十之铭文升级版

铭文一级:

第八章:Spark Streaming进阶与案例实战

updateStateByKey算子
需求:统计到目前为止累积出现的单词的个数(需要保持住以前的状态)

java.lang.IllegalArgumentException: requirement failed: The checkpoint directory has not been set. Please set it by StreamingContext.checkpoint().

需求:将统计结果写入到MySQL
create table wordcount(
word varchar(50) default null,
wordcount int(10) default null
);

通过该sql将统计结果写入到MySQL
insert into wordcount(word, wordcount) values(‘" + record._1 + "‘," + record._2 + ")"

存在的问题:
1) 对于已有的数据做更新,而是所有的数据均为insert
改进思路:
a) 在插入数据前先判断单词是否存在,如果存在就update,不存在则insert
b) 工作中:HBase/Redis

2) 每个rdd的partition创建connection,建议大家改成连接池

window:定时的进行一个时间段内的数据处理

window length : 窗口的长度
sliding interval: 窗口的间隔

这2个参数和我们的batch size有关系:倍数

每隔多久计算某个范围内的数据:每隔10秒计算前10分钟的wc
==> 每隔sliding interval统计前window length的值

铭文二级:

第七章:Spark Streaming核心概念与编程

实战:Spark Streaming处理文件系统数据=>

与处理socket数据类似

1.建FileWordCount类

2.建监控的路径,本次为:/Users/rocky/data/imooc/ss

3.只需修改SocketTextStream成textFileStream

参数设置为file:///Users/rocky/data/imooc/ss/        /*     前面的“///”、最后的“/”  */

4.vi test.log  //里面有内容,然后cp到监控的路径

nc监控6789端口即可

注意事项:

官网Basic Sources

1、必须每次相同的文件格式

2、必须使用移动的方式将内容move到路径

3、一旦移动,无法再修改里面的内容

原文地址:https://www.cnblogs.com/kkxwz/p/8378789.html

时间: 2024-10-07 06:55:22

【慕课网实战】Spark Streaming实时流处理项目实战笔记十之铭文升级版的相关文章

【慕课网实战】Spark Streaming实时流处理项目实战笔记七之铭文升级版

铭文一级: 第五章:实战环境搭建 Spark源码编译命令:./dev/make-distribution.sh \--name 2.6.0-cdh5.7.0 \--tgz \-Pyarn -Phadoop-2.6 \-Phive -Phive-thriftserver \-Dhadoop.version=2.6.0-cdh5.7.0 铭文二级: 第五章:实战环境搭建(所有都配置到环境变量) 1.Scala的安装:Download->previous releases  //课程使用2.11.8

【慕课网实战】Spark Streaming实时流处理项目实战笔记八之铭文升级版

铭文一级: Spark Streaming is an extension of the core Spark API that enables scalable, high-throughput, fault-tolerant stream processing of live data streams. Spark Streaming个人的定义: 将不同的数据源的数据经过Spark Streaming处理之后将结果输出到外部文件系统 特点 低延时 能从错误中高效的恢复:fault-toler

【慕课网实战】Spark Streaming实时流处理项目实战笔记十五之铭文升级版

铭文一级:[木有笔记] 铭文二级: 第12章 Spark Streaming项目实战 行为日志分析: 1.访问量的统计 2.网站黏性 3.推荐 Python实时产生数据 访问URL->IP信息->referer和状态码->日志访问时间->写入到文件中 本地与虚拟机都要装了python才能运行 重要代码: #coding=UTF-8 #数组最后一个没有"," url_paths = [ "class/128.html", "class

【慕课网实战】Spark Streaming实时流处理项目实战笔记二十之铭文升级版

铭文一级: Spring Boot整合Echarts动态获取HBase的数据1) 动态的传递进去当天的时间 a) 在代码中写死 b) 让你查询昨天的.前天的咋办? 在页面中放一个时间插件(jQuery插件),默认只取当天的数据2) 自动刷新展示图 每隔多久发送一个请求去刷新当前的数据供展示 统计慕课网当天实战课程从搜索引擎过来的点击量 数据已经在HBase中有的 自己通过Echarts整合Spring Boot方式自己来实现 铭文二级: 在Spring Boot项目pom.xml下引入<repo

【慕课网实战】Spark Streaming实时流处理项目实战笔记十六之铭文升级版

铭文一级: linux crontab 网站:http://tool.lu/crontab 每一分钟执行一次的crontab表达式: */1 * * * * crontab -e */1 * * * * /home/hadoop/data/project/log_generator.sh 对接python日志产生器输出的日志到Flumestreaming_project.conf 选型:access.log ==> 控制台输出 exec memory logger exec-memory-log

【慕课网实战】Spark Streaming实时流处理项目实战笔记十八之铭文升级版

铭文一级: 功能二:功能一+从搜索引擎引流过来的 HBase表设计create 'imooc_course_search_clickcount','info'rowkey设计:也是根据我们的业务需求来的 20171111 +search+ 1 项目打包:mvn clean package -DskipTests 报错:[ERROR] /Users/rocky/source/work/sparktrain/src/main/scala/com/imooc/spark/project/dao/Cou

Spark Streaming实时流处理项目实战

第1章 课程介绍   1-1 -导学-   1-2 -授课习惯和学习建议   1-3 -OOTB环境使用演示   1-4 -Linux环境及软件版本介绍   1-5 -Spark版本升级第2章 初识实时流处理   2-1 -课程目录   2-2 -业务现状分析   2-3 -实时流处理产生背景   2-4 -实时流处理概述   2-5 -离线计算和实时计算对比   2-6 -实时流处理框架对比   2-7 -实时流处理架构及技术选型   2-8 -实时流处理在企业中的应用第3章 分布式日志收集框

【慕课网实战】Spark Streaming实时流处理项目实战笔记三之铭文升级版

铭文一级: Flume概述Flume is a distributed, reliable, and available service for efficiently collecting(收集), aggregating(聚合), and moving(移动) large amounts of log data webserver(源端) ===> flume ===> hdfs(目的地) 设计目标: 可靠性 扩展性 管理性 业界同类产品的对比 (***)Flume: Cloudera/A

【慕课网实战】Spark Streaming实时流处理项目实战笔记十九之铭文升级版

铭文一级:(没有内容) 铭文二级: 创建Spring boot项目: 看官网,Quick Start下面有两个依赖,必须得使用 但是如果用IDEA构建Spring boot,则会自动添加 New Project->Spring Initializr->Next 任意确定: com.imooc.spark web 选版本.点击左边的web->勾上web project name:imooc_web Reference里修改成本地的maven版本 删除多余的文件:mvn.mvnw.mvnw.