快速乘法取模算法

原理:

32+16+4=52

 1 LL qmul(LL x, LL y, LL mod) { // 乘法防止溢出, 如果p * p不爆LL的话可以直接乘; O(1)乘法或者转化成二进制加法
 2 //快速乘法取模算法
 3
 4     LL ret = 0;
 5     while(y) {
 6         if(y & 1)
 7             ret = (ret + x) % mod;
 8         x = x * 2 % mod;
 9         y >>= 1;
10     }
11     return ret;
12 }

原文地址:https://www.cnblogs.com/Fy1999/p/8908522.html

时间: 2024-10-11 12:34:27

快速乘法取模算法的相关文章

【转】C语言快速幂取模算法小结

(转自:http://www.jb51.net/article/54947.htm) 本文实例汇总了C语言实现的快速幂取模算法,是比较常见的算法.分享给大家供大家参考之用.具体如下: 首先,所谓的快速幂,实际上是快速幂取模的缩写,简单的说,就是快速的求一个幂式的模(余).在程序设计过程中,经常要去求一些大数对于某个数的余数,为了得到更快.计算范围更大的算法,产生了快速幂取模算法.我们先从简单的例子入手:求abmodc 算法1.直接设计这个算法: int ans = 1; for(int i =

HDU6128 二次剩余/二次域求二次剩余解/LL快速乘法取模

LINK 题意:求满足模p下$\frac{1}{a_i+a_j}\equiv\frac{1}{a_i}+\frac{1}{a_j}$的对数,其中$n,p(1\leq n\leq10^5,2\leq p\leq10^{18})$ 思路:推式子,两边同乘$(a_i + a_j)^3$,得$a_i^2+a_j^2 \equiv {a_i·a_j} \mod{p}$,进一步$a_i^2+a_j^2+a_i·a_j\equiv {0} \mod{p}$,然后?然后会点初中数竞,或者数感好会因式分解就能看出

Raising Modulo Numbers_快速幂取模算法

Description People are different. Some secretly read magazines full of interesting girls' pictures, others create an A-bomb in their cellar, others like using Windows, and some like difficult mathematical games. Latest marketing research shows, that

快速幂取模算法

什么是快速幂? 快速幂应当是快速幂取模的简称 对于一般的求幂算法,求$a^b\,\bmod\,m$,即使用循环b次的方法,复杂度是$O(b)$的,当b很大的时候,这种算法就会显得十分缓慢. 快速幂是基于以下明显的事实: $${a^b} \equiv {(a^2)^{\frac{b}{2}}} \pmod{m}\quad b\ is\ even$$ $${a^b} \equiv {(a^2)^{\frac{b}{2}}*a} \pmod{m}\quad b\ is\ odd$$ 那么我们得到这样一

快速幂取模算法【模板】

快速幂取模其实是a^b%c,这就是著名的RSA公钥加密的方法,当a,b都很大的时候,直接求是不可取的,所以就用到了快速幂取模. 首先你得明白他的原理,其实是用到了二分的思想,把b按照二进制展开 b = p(n)*2^n  +  p(n-1)*2^(n-1)  +-+   p(1)*2  +  p(0).其中p(i) (0<=i<=n)为 0 或 1. 所以此时a^b =  a^ (p(n)*2^n  +  p(n-1)*2^(n-1)  +...+  p(1)*2  +  p(0))=  a^

位运算之——按位与(&amp;)操作——(快速取模算法)

由于位运算直接对内存数据进行操作,不需要转成十进制,因此处理速度非常快. 按位与(Bitwise AND),运算符号为& a&b 的操作的结果:a.b中对应位同时为1,则对应结果位也为1. 例如: 10010001101000101011001111000 & 111111100000000 --------------------------------------------- 10101100000000 对10101100000000进行右移8位得到的是101011,这就得

快速幂取模和快乘取模

一.快速幂取模概念 快速幂取模,顾名思义,就是快速的求一个幂式的模(余),比如a^b%c,快速的计算出这个式子的值. 在程序设计过程中,经常要去求一些大数对于某个数的余数,为了得到更快.计算范围更大的算法,产生了快速幂取模算法. 二.快速幂取模算法实现 1)很容易能想到,循环b次,每次乘a,最后对c取余就可以了. int ans = 1; for(int i = 1; i<=b; i++) { ans = ans * a; } ans = ans % c; 这个朴素算法的问题是: 1.如果a和b

快速幂取余算法

下面是一个快速幂的介绍: 先贴一个秦九韶算法(Horner算法)的原理: 设有项的次函数 将前项提取公因子,得 再将括号内的前项提取公因子,得 如此反复提取公因子,最后将函数化为 令 ...... 则即为所求 下面是讲解快速幂的:(By  夜せ︱深   感谢作者) 快速幂取模算法 在网站上一直没有找到有关于快速幂算法的一个详细的描述和解释,这里,我给出快速幂算法的完整解释,用的是C语言,不同语言的读者只好换个位啦,毕竟读C的人较多~ 所谓的快速幂,实际上是快速幂取模的缩写,简单的说,就是快速的求

快速幂取模(POJ 1995)

http://poj.org/problem?id=1995 以这道题来分析一下快速幂取模 a^b%c(这就是著名的RSA公钥的加密方法),当a,b很大时,直接求解这个问题不太可能 利用公式a*b%c=((a%c)*b)%c 每一步都进行这种处理,这就解决了a^b可能太大存不下的问题,但这个算法的时间复杂度依然没有得到优化 由此可以用快速幂算法优化: http://www.cnblogs.com/qlky/p/5020402.html 再结合取模公式: (a + b) % p = (a % p