hihocoder网络流一·Ford-Fulkerson算法

网络流一·Ford-Fulkerson算法

时间限制:10000ms

单点时限:1000ms

内存限制:256MB

描述

小Hi和小Ho住在P市,P市是一个很大很大的城市,所以也面临着一个大城市都会遇到的问题:交通拥挤。

小Ho:每到周末回家感觉堵车都是一种煎熬啊。

小Hi:平时交通也还好,只是一到上下班的高峰期就会比较拥挤。

小Ho:要是能够限制一下车的数量就好了,不知道有没有办法可以知道交通系统的最大承受车流量,这样就可以限制到一个可以一直很顺畅的数量了。

小Hi:理论上是有算法的啦。早在1955年,T.E.哈里斯就提出在一个给定的网络上寻求两点间最大运输量的问题。并且由此产生了一个新的图论模型:网络流。

小Ho:那具体是啥?

小Hi:用数学的语言描述就是给定一个有向图G=(V,E),其中每一条边(u,v)均有一个非负数的容量值,记为c(u,v)≥0。同时在图中有两个特殊的顶点,源点S和汇点T。

举个例子:

其中节点1为源点S,节点6为汇点T。

我们要求从源点S到汇点T的最大可行流量,这个问题也被称为最大流问题。

在这个例子中最大流量为5,分别为:1→2→4→6,流量为1;1→3→4→6,流量为2;1→3→5→6,流量为2。

小Ho:看上去好像挺有意思的,你让我先想想。

提示:Ford-Fulkerson算法

输入

第1行:2个正整数N,M。2≤N≤500,1≤M≤20,000。

第2..M+1行:每行3个整数u,v,c(u,v),表示一条边(u,v)及其容量c(u,v)。1≤u,v≤N,0≤c(u,v)≤100。

给定的图中默认源点为1,汇点为N。可能有重复的边。

输出

第1行:1个整数,表示给定图G的最大流。

样例输入
6 7
1 2 3
1 3 5
2 4 1
3 4 2
3 5 3
4 6 4
5 6 2
样例输出
5分析:最大流关键是求增广路,邻接表存边,便于修改;代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <climits>
#include <cstring>
#include <string>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <vector>
#include <list>
#define rep(i,m,n) for(i=m;i<=n;i++)
#define rsp(it,s) for(set<int>::iterator it=s.begin();it!=s.end();it++)
#define mod 1000000007
#define inf 0x3f3f3f3f
#define vi vector<int>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define ll long long
#define pi acos(-1.0)
#define pii pair<int,int>
#define Lson L, mid, rt<<1
#define Rson mid+1, R, rt<<1|1
const int maxn=5e2+10;
using namespace std;
ll gcd(ll p,ll q){return q==0?p:gcd(q,p%q);}
ll qpow(ll p,ll q){ll f=1;while(q){if(q&1)f=f*p;p=p*p;q>>=1;}return f;}
int n,m,k,t,h[maxn],tot,p[maxn],a[maxn],v[maxn][maxn],ans;
struct node
{
    int fr,to,nxt,cap,flow;
}e[20000<<1];
void add(int x,int y,int z)
{
    e[tot].fr=x;
    e[tot].to=y;
    e[tot].nxt=h[x];
    e[tot].cap=z;
    h[x]=tot++;
    e[tot].fr=y;
    e[tot].to=x;
    e[tot].nxt=h[y];
    h[y]=tot++;
}
void max_flow(int s,int t)
{
    ans=0;
    while(1)
    {
        memset(a,0,sizeof a);
        queue<int>q;
        q.push(s);a[s]=inf;
        while(!q.empty())
        {
            int x=q.front();
            q.pop();
            for(int i=h[x];i!=-1;i=e[i].nxt)
            {
                int to=e[i].to,cap=e[i].cap,flow=e[i].flow;
                if(!a[to]&&cap>flow)
                {
                    p[to]=i;
                    a[to]=min(a[x],cap-flow);
                    q.push(to);
                }
            }
            if(a[t])break;
        }
        if(!a[t])break;
        for(int now=t;now!=s;now=e[p[now]].fr)
        {
            e[p[now]].flow+=a[t];
            e[p[now]^1].flow-=a[t];
        }
        ans+=a[t];
    }
}
int main()
{
    int i,j;
    scanf("%d%d",&n,&m);
    memset(h,-1,sizeof h);
    while(m--)
    {
        int b,c,d;
        scanf("%d%d%d",&b,&c,&d);
        v[b][c]+=d;
    }
    rep(i,1,n)rep(j,1,n)if(v[i][j])add(i,j,v[i][j]);
    max_flow(1,n);
    printf("%d\n",ans);
    //system("Pause");
    return 0;
}

时间: 2024-10-11 05:08:54

hihocoder网络流一·Ford-Fulkerson算法的相关文章

ACM/ICPC 之 网络流入门-Ford Fulkerson(POJ1149)

按顾客访问猪圈的顺序依次构图(顾客为结点),汇点->第一个顾客->第二个顾客->...->汇点 //第一道网络流 //Ford-Fulkerson //Time:47Ms Memory:276K #include<iostream> #include<cstring> #include<cstdio> #include<algorithm> #include<queue> using namespace std; #def

hihocoder 网络流二&#183;最大流最小割定理

网络流二·最大流最小割定理 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi:在上一周的Hiho一下中我们初步讲解了网络流的概念以及常规解法,小Ho你还记得内容么? 小Ho:我记得!网络流就是给定了一张图G=(V,E),以及源点s和汇点t.每一条边e(u,v)具有容量c(u,v).网络流的最大流问题求解的就是从s到t最多能有多少流量. 小Hi:那这个问题解决办法呢? 小Ho:解决网络流的基本思路就是寻找增广路,不断更新残留网络.直到找不到新的增广路,此时得到的

hihoCoder #1097 最小生成树之Prim算法

原题网址,http://hihocoder.com/problemset/problem/1097 #1097 : 最小生成树一·Prim算法 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 最近,小Hi很喜欢玩的一款游戏模拟城市开放出了新Mod,在这个Mod中,玩家可以拥有不止一个城市了! 但 是,问题也接踵而来——小Hi现在手上拥有N座城市,且已知这N座城市中任意两座城市之间建造道路所需要的费用,小Hi希望知道,最少花费多少就 可以使得任意两座城市都可以通过所建

最大网络流——增广路算法

几句废话:读了刘汝佳的书之后,感觉一切都是那么茫然,于是自己在网上找教程,自己一点点码的,大概用了三天.网络流基础:看来我很有必要说一下网络流的基础网络流问题就是给你一个图,每个图的边权叫做这条边的流量,问你从起始点出发,有多少值能通过这些边流到重点我知道你没看懂,举个例子: 如图: 最大值为 从1到2到4运6个 从1到2到3到4运1个 从1到3到4运3个 一共运10个. 举例说完了,那么我说几个定义: 容量,就只一条边的权值,表示能从这条边运送的最大值 流量,表示一条边实际上流过的最大值 那么

网络流求最大流算法

一.网络流的定义:有向图G=(V,E)中,点集中有一源点S,一汇点T.且S入度为0,T出度为0.对于每条边edge,都有一权值函数c,表示其容量,一权值函数f,表示其实际流量. 满足对于任意一条边都有f(edge)<=c(edge). 二.最大流的定义:在不违背网络流的定义下,S到T的最大流量. 三.増广路的思想. 我们先考虑一个网络流:红色数字表示实际流量,蓝色表示边的容量,黄色表示更优的流量. 这个流从S到T的流量是5,但其显然不是最优的. 这个流比上面那个优,而且事实上,这个流就是当前网络

网络流之最大流算法

最大流 网络流的定义: 在一个网络(有流量)中有两个特殊的点,一个是网络的源点(s),流量只出不进,一个是网络的汇点(t),流量只进不出. 最大流:就是求s-->t的最大流量 假设 u,v 两个点,连接这两个点的边为e(u,v); 对于每一条边都有一个实际流量f(u,v),还有一个容量c(u,v),就是这条边上可以通过的最大流量. 当一条边的容量c(u,v)=0,证明这条边是不存在的, 作为一个合格的网络流,必须满足三个条件: 1>每条边的实际流量小于等于容量  f(u,v)<=c(u,

(转) 网络流之最大流算法(EdmondsKarp)

求网络流有很多算法,这几天学习了两种,记录一下EK算法. 首先是网络流中的一些定义: V表示整个图中的所有结点的集合.E表示整个图中所有边的集合.G = (V,E) ,表示整个图.s表示网络的源点,t表示网络的汇点.对于每条边(u,v),有一个容量c(u,v)   (c(u,v)>=0),如果c(u,v)=0,则表示(u,v)不存在在网络中.相反,如果原网络中不存在边(u,v),则令c(u,v)=0.对于每条边(u,v),有一个流量f(u,v). 一个简单的例子.网络可以被想象成一些输水的管道.

网络流最大流——dinic算法

前言 网络流问题是一个很深奥的问题,对应也有许多很优秀的算法.但是本文只会讲述dinic算法 最近写了好多网络流的题目,想想看还是写一篇来总结一下网络流和dinic算法以免以后自己忘了... 网络流问题简述 一个很普遍的例子就是--你家和自来水厂之间有许多中转站,中转站又由一些水管连接着.我们假设自来水厂的供水是无限的,并且中转站内能存储的水量也是无限的,但是管道有宽又窄,很显然管道内的流量必须小于等于管道的承载范围(否则管道就被撑爆了),那么问题就是要你求出你家最多能收到多大流量的水. emm

hihoCoder#1098 最小生成树二&#183;Kruscal算法

原题地址 以前没写过Kruscal算法,写了才知道原来比Prime算法简单多了... 并查集的应用太经典了! 代码: 1 #include <iostream> 2 #include <cstdlib> 3 4 using namespace std; 5 6 #define MAX_EDGE 1000008 7 #define MAX_POINT 100008 8 9 struct Edge { 10 int a; 11 int b; 12 int len; 13 }; 14 1