Spark集群模式&Spark程序提交

Spark集群模式&Spark程序提交

1. 集群管理器

Spark当前支持三种集群管理方式

Standalone—Spark自带的一种集群管理方式,易于构建集群。

Apache Mesos—通用的集群管理,可以在其上运行Hadoop MapReduce和一些服务应用。

Hadoop YARN—Hadoop2中的资源管理器。

Tip1: 在集群不是特别大,并且没有mapReduce和Spark同时运行的需求的情况下,用Standalone模式效率最高。

Tip2: Spark可以在应用间(通过集群管理器)和应用中(如果一个SparkContext中有多项计算任务)进行资源调度。

2. 组件

Spark应用程序在集群上以一系列进程集合运行,通过程序(driver program)中的SparkContext对象进行卸掉。SparkContext可以与多种集群管理器(Cluster Manager)相连接,这些集群管理器可以在应用程序间分配计算资源。连到集群管理器后,Spark在急群众查找executor节点,这些节点执行运算与数据的存储。用户的应用程序(以JAR文件的形式传给SparkContext)被发送到executors。最后SparkContext发送任务tasks到executors进行执行。

Tip1: 每个Executor中以线程池的方式并行运行多个Task。意味着是应用程序之间在调度方面(每个driver调度自身的任务)和执行方面(来自不同的任务在不同的JVM上执行)相互隔离,同时,数据无法在不同的应用程序(SparkContext)之间共享,除非数据被写入到额外的存储系统。

Tip2: Spark对于底层集群管理系统来说是不可知的。只要它能够获得executor进程,并且彼此之间可以进行通信,那么很容易将其运行在一个同时支持其它应用框架的集群管理器(Mesos/YARN)上。

Tip3: 由于driver在集群上调度任务,它所在的节点应该靠近工作节点,最好位于相同的局域网中。如果想要远程地向集群发送请求,最好是为driver开启RPC,以是的就近提交操作而不是在一个距离工作节点很远的位置启动driver。

3. 提交应用程序

使用Spark的bin目录中的spark-submit脚本向集群中提交应用程序。该脚本不论cluster managers有何差异,提交作业时都有相同的接口,不必单独配置。

4. 使用spark-submit提交任务

打包好应用程序后,可以使用bin/spark-submit脚本提交应用程序。该脚本负责所需类路径(classpath)以及依赖,该脚本可以用于所有Spark支持的集群部署模式。

常用的选项:

--class: 应用程序(application)入口

--master: 集群中master节点的URL(e.g. spark://23.195.26.187:7077)

--deploy-mode: 是否将driver部署到worker节点(cluster模式)或者将driver作为一个外部的client(client模式)

application-jar:打包的包含相关依赖的jar文件的路径。该地址应该对集群可见,例如hdfs://或者file://地址

Application-arguments:传送给应用程序main函数的参数。

Tip1: 在一个与worker机器物理上相近的机器上提交应用程序(例如Standalone模式时EC2集群上的master节点),这种情况client模式更合适。Client模式下,driver直接在spark-submit程序中启动,应用程序相关的输入输出与所在的console相联系。Client模式同样适用spark-shell中的应用程序。

Tip2: 如果一个应用程序在与那里worker集群的节点上提交(例如本地的笔记本),此时适合使用cluster模式减少driver和executer之间的网络延时。注意,当前cluster模式不适用于standalone集群,Mesos集群或Python程序。

Tip3: 可以使用 –help 选项查看spark-submit支持的所有选项。

以下示例给出常用选项:

5. 监控

每个driver程序均有一个Web界面,通常运行在4040端口,将会显示正在运行的任务的信息,executors及存储的相关信息。通过使用http://<driver-node>:4040进行访问。

6. Master地址

传送到Spark的master的地址可以使用如下格式:

7. 读取配置优先级

在代码中的SparkConf中的配置参数具有最高优先级,其次是传送spark-submit脚本的参数,最后是配置文件(conf/spark-defaults.conf)中的参数。

如果不清楚配置参数从何而来,可以使用spark-submit的—verbose选项来打印出细粒度的调度信息。

时间: 2024-12-19 12:51:57

Spark集群模式&Spark程序提交的相关文章

【待补充】Spark 集群模式 &amp;&amp; Spark Job 部署模式

0. 说明 Spark 集群模式 && Spark Job 部署模式 1. Spark 集群模式 [ Local ] 使用一个 JVM 模拟 Spark 集群 [ Standalone ] 启动 master + worker 进程 [ mesos ] -- [ Yarn ] -- 2. Spark Job 部署模式 [ Client ] Driver 程序运行在 Client 端. [ Cluster ] Driver 程序运行在某个 worker 上. spark-shell 只能以

3.Spark 集群模式

Spark 集群模式 系统当前支持几种集群管理器: Standalone – 包含在spark中的一个简单集群管理器,它使得设置一个集群很容易. Apache Mesos – 一个通用集群管理器,也能运行Hadoop MapReduce 和 service 应用. Hadoop YARN – the resource manager in Hadoop 2. Kubernetes – an open-source system for automating deployment, scaling

spark集群与spark HA高可用快速部署 spark研习第一季

1.spark 部署 标签: spark 0 apache spark项目架构 spark SQL -- spark streaming -- MLlib -- GraphX 0.1 hadoop快速搭建,主要利用hdfs存储框架 下载hadoop-2.6.0,解压,到etc/hadoop/目录下 0.2 快速配置文件 cat core-site.xml <configuration> <property> <name>fs.defaultFS</name>

Spark集群测试

1. Spark Shell测试 Spark Shell是一个特别适合快速开发Spark原型程序的工具,可以帮助我们熟悉Scala语言.即使你对Scala不熟悉,仍然可以使用这一工具.Spark Shell使得用户可以和Spark集群进行交互,提交查询,这便于调试,也便于初学者使用Spark. 测试案例1: [[email protected] spark]$ MASTER=spark://Master:7077 bin/spark-shell //连接到集群 Spark assembly ha

在vm里搭建高可用Spark集群

说明:本机是在win10系统下,安装用的是VMware15, centOS7, JDK1.8, spark-2.4.0,hadoop-2.7.7, apache-hive-2.3.4, scala-2.12.8.在VMware里创建了node01, node02, node03, node04四个节点(或者叫四个虚拟机).注意在使用vm14版本的时候出现黑屏,情况如下:在vm上安装好4个节点后,用管理员身份打开VM,启动节点有时候会碰到启动的节点是黑屏的情况,一直挂起,解决方法:以管理员身份运行

spark集群--elasticsearch

spark集群搭建 elasticsearch读写数据 ==================================================== spark集群搭建 spark官网:http://spark.apache.org 各个版本:spark-2.1.0, java 1.8.0_121以及elasticsearch-5.2.0 本集群利用的是spark的独立集群管理器 准备N台服务器(1台主节点,n-1台工作节点) 分别将N台机器装上java 1.8.0_121以及将sp

将java开发的wordcount程序提交到spark集群上运行

今天来分享下将java开发的wordcount程序提交到spark集群上运行的步骤. 第一个步骤之前,先上传文本文件,spark.txt,然用命令hadoop fs -put spark.txt /spark.txt,即可. 第一:看整个代码视图 打开WordCountCluster.java源文件,修改此处代码: 第二步: 打好jar包,步骤是右击项目文件----RunAs--Run Configurations 照图填写,然后开始拷贝工程下的jar包,如图,注意是拷贝那个依赖jar包,不是第

Spark集群任务提交

1. 集群管理器 Spark当前支持三种集群管理方式 Standalone-Spark自带的一种集群管理方式,易于构建集群. Apache Mesos-通用的集群管理,可以在其上运行Hadoop MapReduce和一些服务应用. Hadoop YARN-Hadoop2中的资源管理器. Tip1: 在集群不是特别大,并且没有mapReduce和Spark同时运行的需求的情况下,用Standalone模式效率最高. Tip2: Spark可以在应用间(通过集群管理器)和应用中(如果一个SparkC

【Spark01】SparkSubmit兼谈Spark集群管理和部署模式

关于Cluster Manager和Deploy Mode的组合在SparkSubmit.scala的createLaunchEnv中有比较详细的逻辑. Cluster Manager基本上有Standalone,YARN和Mesos三种情况,说明Cluster Manager用来指明集群的资源管理器.这就是说不管是Client还是Cluster部署方式(deployMode的两种可能),都会使用它们做集 群管理器,也就是说Client也是一种集群部署方式??? /** * @return a