红黑树和AVL树的区别(转)

add by zhj: AVL树和红黑树都是平衡二叉树,虽然AVL树是最早发明的平衡二叉树,但直接把平衡二叉树等价于AVL树,我认为非常不合适。

但很多地方都在这么用。两者的比较如下

平衡二叉树类型 平衡度 调整频率 适用场景
AVL树 查询多,增/删少
红黑树 增/删频繁

原文:https://blog.csdn.net/u010899985/article/details/80981053

一,AVL树

(1)简介

一般用平衡因子判断是否平衡并通过旋转来实现平衡,左右子树树高不超过1,和红黑树相比,AVL树是高度平衡的二叉树,平衡条件必须满足(所有节点的左右子树高度差不超过1)。不管我们是执行插入还是删除操作,只要不满足上面的条件,就要通过旋转来保持平衡,而的由于旋转比较耗时,由此我们可以知道AVL树适合用于插入与删除次数比较少,但查找多的情况

(2)局限性

由于维护这种高度平衡所付出的代价比从中获得的效率收益还大,故而实际的应用不多,更多的地方是用追求局部而不是非常严格整体平衡的红黑树。当然,如果应用场景中对插入删除不频繁,只是对查找要求较高,那么AVL还是较优于红黑树。

(3)应用

1,Windows NT内核中广泛存在;

二、红黑树

(1)简介

也是一种平衡二叉树,但每个节点有一个存储位表示节点的颜色,可以是红或黑。通过对任何一条从根到叶子的路径上各个节点着色的方式的限制,红黑树确保没有一条路径会比其它路径长出两倍,因此,红黑树是一种弱平衡二叉树(由于是弱平衡,可以看到,在相同的节点情况下,AVL树的高度<=红黑树),相对于要求严格的AVL树来说,它的旋转次数少,所以对于搜索,插入,删除操作较多的情况下,用红黑树。

(2)性质

如图1所示,每个节点非红即黑;

1. 每个节点非红即黑
2. 根节点是黑的;
3. 每个叶节点(叶节点即树尾端NULL指针或NULL节点)都是黑的;
4. 如图所示,如果一个节点是红的,那么它的两儿子都是黑的;
5. 对于任意节点而言,其到叶子点树NULL指针的每条路径都包含相同数目的黑节点;
6. 每条路径都包含相同的黑节点;

(3)应用

1. 广泛用于C ++的STL中,地图是用红黑树实现的;
2. Linux的的进程调度,用红黑树管理进程控制块,进程的虚拟内存空间都存储在一颗红黑树上,每个虚拟内存空间都对应红黑树的一个节点,左指针指向相邻的虚拟内存空间,右指针指向相邻的高地址虚拟内存空间;
3. IO多路复用的epoll采用红黑树组织管理sockfd,以支持快速的增删改查;
4. Nginx中用红黑树管理定时器,因为红黑树是有序的,可以很快的得到距离当前最小的定时器;
5. Java的TreeMap的实现;

原文地址:https://www.cnblogs.com/ajianbeyourself/p/11173851.html

时间: 2024-10-06 21:00:02

红黑树和AVL树的区别(转)的相关文章

Linux内核之于红黑树and AVL树

为什么Linux早先使用AVL树而后来倾向于红黑树?       实际上这是由红黑树的实用主义特质导致的结果,本短文依然是形而上的观点.红黑树可以直接由2-3树导出,我们可以不再提红黑树,而只提2-3树,因为 2-3树的操作太简单.另外,任何红黑树的操作和特性都可以映射到2-3树中.因此红黑树和AVL树的比较就成了2-3树和AVL树的比较. 它们俩的区别在哪?2-3树的平衡是完美平衡的,但是树杈数量却可以是3个,而AVL树差一点点就完美平衡的标准二叉树,它只允许子树的高度差最多为1. 可见这么看

B树、B+树、红黑树、AVL树

定义及概念 B树 二叉树的深度较大,在查找时会造成I/O读写频繁,查询效率低下,所以引入了多叉树的结构,也就是B树.阶为M的B树具有以下性质: 1.根节点在不为叶子节点的情况下儿子数为 2 ~ M2.除根结点以外的非叶子结点的儿子数为 M/2(向上取整) ~ M3.拥有 K 个孩子的非叶子节点包含 k-1 个keys(关键字),且递增排列4.所有叶子结点在同一层,即深度相同 (叶节点可以看成是一种外部节点,不包含任何关键字信息) 在B-树中,每个结点中关键字从小到大排列,并且当该结点的孩子是非叶

红黑树和AVL树的实现与比较-----算法导论

一.问题描述 实现3种树中的两种:红黑树,AVL树,Treap树 二.算法原理 (1)红黑树 红黑树是一种二叉查找树,但在每个结点上增加一个存储位表示结点的颜色,可以是red或black.红黑树满足以下五个性质: 1) 每个结点或是红色或是黑色 2) 根结点是黑色 3) 每个叶结点是黑的 4)如果一个结点是红的,则它的两个儿子均是黑色 5) 每个结点到其子孙结点的所有路径上包含相同数目的黑色结点 本实验主要实现红黑树的初始化,插入和删除操作.当对红黑树进行插入和 删除操作时,可能会破坏红黑树的五

【算法导论学习-26】 二叉树专题4:红黑树、AVL树、B-Tree

1.   红黑树(Red-Black Trees) 参考<算法导论>P308页,红黑树是一种对树的高度要求最灵活的准平衡二叉搜索树.五大属性: 1: Every node is either RED or BLACK. 2: The root is black. 3: Every leaf(NIL) is black.  (The NIL is the sentinel.) 4: If a node is RED, then both its children areblack. 5: For

红黑树和AVL树的比较

1. 红黑树并不追求"完全平衡"--它只要求部分地达到平衡要求,降低了对旋转的要求,从而提高了性能. 红黑树能够以O(log2 n) 的时间复杂度进行搜索.插入.删除操作.此外,由于它的设计,任何不平衡都会在三次旋转之内解决.当然,还有一些更好的,但实现起来更复杂的数据结构,能够做到一步旋转之内达到平衡,但红黑树能够给我们一个比较"便宜"的解决方案.红黑树的算法时间复杂度和AVL相同,但统计性能比AVL树更高. 当然,红黑树并不适应所有应用树的领域.如果数据基本上是

红黑树与AVL树

概述:本文从排序二叉树作为引子,讲解了红黑树,最后把红黑树和AVL树做了一个比较全面的对比. 1 排序二叉树 排序二叉树是一种特殊结构的二叉树,可以非常方便地对树中所有节点进行排序和检索. 排序二叉树要么是一棵空二叉树,要么是具有下列性质的二叉树: ? 若它的左子树不空,则左子树上所有节点的值均小于它的根节点的值: ? 若它的右子树不空,则右子树上所有节点的值均大于它的根节点的值: ? 它的左.右子树也分别为排序二叉树. 下图显示了一棵排序二叉树: 对排序二叉树,若按中序遍历就可以得到由小到大的

B树、B+树、红黑树、AVL树比较

B树是为了提高磁盘或外部存储设备查找效率而产生的一种多路平衡查找树. B+树为B树的变形结构,用于大多数数据库或文件系统的存储而设计. B树相对于红黑树的区别 在大规模数据存储的时候,红黑树往往出现由于树的深度过大而造成磁盘IO读写过于频繁,进而导致效率低下的情况.为什么会出现这样的情况,我们知道要获取磁盘上数据,必须先通过磁盘移动臂移动到数据所在的柱面,然后找到指定盘面,接着旋转盘面找到数据所在的磁道,最后对数据进行读写.磁盘IO代价主要花费在查找所需的柱面上,树的深度过大会造成磁盘IO频繁读

AVL树、红黑树以及B树介绍

简介 首先,说一下在数据结构中为什么要引入树这种结构,在我们上篇文章中介绍的数组与链表中,可以发现,数组适合查询这种静态操作(O(1)),不合适删除与插入这种动态操作(O(n)),而链表则是适合删除与插入,而查询效率则就比较慢了,本文要分享学习的树就是为了平衡这种静态操作与动态操作的差距. 一.二叉查找树 简介 满足下面条件就是二叉查找树 任意节点左子树不为空,则左子树的值均小于根节点的值. 任意节点右子树不为空,则右子树的值均大于于根节点的值. 任意节点的左右子树也分别是二叉查找树. 没有键值

红黑树与AVL(平衡二叉树)的区别

关于红黑树和AVL树,来自网络: 1 好处 及 用途 红黑树 并不追求"完全平衡 "--它只要求部分地达到平衡要求,降低了对旋转的要求,从而提高了性能. 红黑树能够以 O(log2  n)  的时间复杂度进行搜索.插入.删除操作.此外,由于它的设计,任何不平衡都会在三次旋转之内解决.当然,还有一些更好的,但实现起来更复杂的数据结构 能够做到一步旋转之内达到平衡,但红黑树能够给我们一个比较"便宜"的解决方案.红黑树的算法时间复杂度和AVL相同,但统计性能比AVL树更高