Opencv:视频中人脸检测并保存人脸图片

# OpenCV版本的视频检测
import cv2

# 图片识别方法封装
def discern(img):
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    cap = cv2.CascadeClassifier(
        "C:\Python36\Lib\site-packages\opencv-master\data\haarcascades\haarcascade_frontalface_default.xml"
    )
    faceRects = cap.detectMultiScale(
        gray, scaleFactor=1.2, minNeighbors=3, minSize=(50, 50))
    if len(faceRects):
        for faceRect in faceRects:
            x, y, w, h = faceRect
            cv2.rectangle(img, (x, y), (x + h, y + w), (0, 255, 0), 2)  # 框出人脸
    cv2.imshow("Image", img)

# 获取摄像头0表示第一个摄像头
cap = cv2.VideoCapture(0)
while (1):  # 逐帧显示
    ret, img = cap.read()
    # cv2.imshow("Image", img)
    discern(img)
    if cv2.waitKey(1) & 0xFF == ord(‘q‘):
        break
cap.release()  # 释放摄像头
cv2.destroyAllWindows()  # 释放窗口资源
 

原文地址:https://www.cnblogs.com/jumpkin1122/p/11509788.html

时间: 2024-10-07 03:21:12

Opencv:视频中人脸检测并保存人脸图片的相关文章

从视频中提取图片,对图片做人脸检测并截取人脸区域

环境配置:VS2013+opencv2.4.10+libface.lib 参考博客:http://blog.csdn.net/augusdi/article/details/11042329 http://www.1024do.com/?p=1296 首先给出视频处理的函数video_process.hpp #include <stdio.h> #include <opencv2/opencv.hpp> #include "facedetect-dll.h" #

图像人脸检测(框出人脸、笑脸、眼睛)

1 # 通过图片识别人脸 2 3 #1.概述: 人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术.用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部的一系列相关技术,通常也叫做人像识别.面部识别. 4 5 # 2.人脸识别步骤 6 # 1 人脸图像采集及检测 7 # 2 人脸图像预处理 8 # 3 人脸图像特征提取以及匹配与识别 9 10 # 3. 人脸识别的方法 11 # 在OpenCV中主要使用了两种特征(即两种方法)进行人脸检

第三十七节、人脸检测MTCNN和人脸识别Facenet

在说到人脸检测我们首先会想到利用Harr特征提取和Adaboost分类器进行人脸检测(有兴趣的可以去一看这篇博客第九节.人脸检测之Haar分类器),其检测效果也是不错的,但是目前人脸检测的应用场景逐渐从室内演变到室外,从单一限定场景发展到广场.车站.地铁口等场景,人脸检测面临的要求越来越高,比如:人脸尺度多变.数量冗大.姿势多样包括俯拍人脸.戴帽子口罩等的遮挡.表情夸张.化妆伪装.光照条件恶劣.分辨率低甚至连肉眼都较难区分等.在这样复杂的环境下基于Haar特征的人脸检测表现的不尽人意.随着深度学

图像处理项目——人脸检测—视频

人脸检测 *开发环境为visual studio2010*使用的是opencv中的Haart特征分类器,harr Cascades*检测对象为视频中的人脸 一:主要步骤 1.加载分类器,将人脸检测分类器和笑脸检测分类器放在项目目录中去 2.调用detecMutiScale()函数检测,对函数中相关的参数进行修改调整, 是检测的结果更加精确 3.打开摄像头或者视频文件,把检测到的人脸用矩形画出来 opencv中用来做目标检测的级联分类器的一个 类,其结构如下: The constructor fo

人脸检测——基于OpenCV等开源库

一.人脸检测简介 人脸检测是自动人脸识别系统中的一个关键环节.早期的人脸识别研究主要针对具有较强约束条件的人脸图象(如无背景的图象),往往假设人脸位置一直或者容易获得,因此人脸检测问题并未受到重视.随着电子商务等应用的发展,人脸识别成为最有潜力的生物身份验证手段,这种应用背景要求自动人脸识别系统能够对一般图象具有一定的识别能力,由此所面临的一系列问题使得人脸检测开始作为一个独立的课题受到研究者的重视.今天,人脸检测的应用背景已经远远超出了人脸识别系统的范畴,在基于内容的检索.数字视频处理.视频检

C++开发人脸性别识别教程(4)——OpenCv的人脸检测函数

这个项目主要包含三部分:人脸检测.特征提取.性别分类: 这篇博客中我们重点介绍OpenCv的人脸检测函数.这篇博客我们先不提MFC,而是在win32控制台下编写一段人脸检测的程序. 一.开启摄像头 我们先讲解如何通过摄像头来采集图像,这听起来更有实际意义. 1.新建工程并配置OpenCv(注意工程类型选择win32控制台应用程序): 2.包含头文件 OpenCv2.x版本包含头文件非常方便,一句话搞定: #include <opencv2\opencv.hpp> using namespace

【OpenCV入门指南】第十三篇 人脸检测

[OpenCV入门指南]第十三篇 人脸检测 本篇介绍图像处理与模式识别中最热门的一个领域--人脸检测(人脸识别).人脸检测可以说是学术界的宠儿,在不少EI,SCI高级别论文都能看到它的身影.甚至很多高校学生的毕业设计都会涉及到人脸检测.当然人脸检测的巨大实用价值也让很多公司纷纷关注,很多公司都拥有这方面的专利或是开发商业产品出售. 在OpenCV中,人脸检测也是其热门应用之一.在OpenCV的特征检测专题就详细介绍了人脸检测的原理--通过Haar特征来识别是否为人脸.Haar特征检测原理与Haa

视频人脸检测

又到研究生毕业季,大家都在忙着论文的撰写.闲来无事,和同门一起看了下网上某外国友人共享的一个实时人脸检测的MATLAB程序,本非我专业,只不过看到那个效果确实蛮有意思的,所以特意卸载了用了好久的2012a版本,重新装了一个9G多的2014a 版本的MATLAB. 话说MATLAB是越来越大,记得大一那会老师上课时说这个软件有1G大,很占空间,当时听了好生诧异.没想到几年不到,随着存储和电脑性能的提升,这个软件也是成倍的增长.不过话说回来,功能却是越来越强大了. 首先下载一个WEBcamera的插

人脸检测之Haar-like,Adaboost,级联(cascade)

0:写在前面的话 写在前面的牢骚话,作为一个非主流工程师,我专业与目前工作都与这些知识相隔十万八千里,所以,我所学习和实现的完全是因为兴趣,目前还研究学习的很浅,谈不上高深,所以还是要继续努力学习.希望和大家多交流,也欢迎伪大牛,假专家板砖伺候,也希望真大牛多指点(真大牛不会啰嗦一堆来显得他知道的多,哈哈),总之,本人还在菜鸟阶段,欢迎指教.0.0本文如有错误请及时留言指出,博主会在第一时间修改,确保不会对其他读者产生副作用. 1:人脸检测与识别 人脸识别系统主要包括四个组成部分,分别为:人脸图