Spark中资源与任务的关系

在介绍Spark中的任务和资源之前先解释几个名词:

Dirver Program:运行Application的main函数(用户提交的jar包中的main函数)并新建SparkContext实例的程序,称为驱动程序,通常用SparkContext代表驱动程序(任务的驱动程序)。

Cluster Manager:集群管理器是集群资源管理的外部服务。Spark上现在主要有Standalone、YARN、Mesos3种集群资源管理器。Spark自带的Standalone模式能满足绝大部分

        Spark计算环境中对集群资源管理的需求,基本只有在集群中运行多套计算框架时才考虑使用YARN和Mesos。通常说的Spark on YARN或者Standalone指的就是

        不同的集群资源管理方式(资源管理器)。

Worker Node:集群中可以运行Application代码的工作节点(计算资源)。

Executor:  在Worker Node上为Application启动的一个工作进程,在进程中负责任务(Task)的运行,并且负责将数据存放在内存或者磁盘上,在Excutor内部通过多线程(线程池)

       并发处理应用程序的具体任务(在计算资源上运行的工作进程)。

       每个Application都有各自独立的Executors,因此应用程序之间是相互隔离的。

Task:    任务是指被Driver送到Executor上的工作单元。通常一个任务会处理一个Partition的数据,每个Partition一般是一个HDFS的Block块的大小(在工作进程中运行的任务

       线程)。

Application: 是创建了SparkContext实例对象的Spark用户程序,包含一个Driver Program和集群中的多个Executor(运行在Spark集群上的应用程序)。

Job:    和Spark的action对应,每个action都会对应一个Job实例,每个Job会拆分成多个Stage,一个Stage包含一个任务集(TaskSet),任务集中的各个任务通过一定的

        调度机制发送到工作单位(Executor)上并行执行(Application中进行任务切分的粒度)。

0. 资源的调度管理YARN vs Standalone:

Standalone:此模式下由Master节点负责,Worker节点是在Master节点的调度下启动的Executor。此时集群的部署为典型的Master/Slave架构。

Spark on YARN:yarn-cluster模式提交,首先它会和ResourceManager通信,发送请求给ResourceManager,请求启动ApplicationMaster,ResourceManager接收到请求之后,

     会给它分配一个Container,然后在某个NodeManager上启动ApplicationMaster。ApplicationMaster启动之后,会和ResourceManager通信,ApplicationMaster(AM)

     就相当于Driver。AM找RM,请求container,启动Executor,RM会给它分配一批Container,用于启动Exectutor。此时AM会去连接其他NM,去启动Executor,NM

     就相当于Worker。Executor启动之后,向AM反向注册。与standalone相比,AM就相当于Driver,NM相当于Worker,RM相当于Master。NM上启动Executor之后还是

     会反向向AM注册,后面的流程与之前的结构是一样的,这就是yarn-cluster提交模式。

参考:https://zhuanlan.zhihu.com/p/61902619

1. Standalone模式下任务与资源的关系

从上文可知,Spark集群中的资源主要为计算资源,在YARN模式下对应的是Container,Standalone模式下对应的是Worker,Application是用户开发的Spark应用程序,提交到

集群上运行,运行开始时集群给Application分配资源,运行结束后集群会回收资源(Application会释放资源);同一个集群上可以同时运行多个Application,Application之间相互隔离,每个Application对应一个SparkContext对象,由该SparkContext维护与集群之间的关系。

Worker的资源由Master进行管理,Application任务注册到Master之后,由Master根据集群当前Worker的工作状况进行资源分配。分配的资源由SparkContext创建的三个核心对象DAGScheduler,TaskScheduler,SchedulerBackend根据Application进行相应的任务划分和调度。SparkContext创建核心对象及获取计算资源的流程如下图

2. DAGScheduler

DAGSchedule是针对Application对任务进行规划。

DAGScheduler是面向Stage的高层级调度器,DAGScheduler把DAG拆分成很多Task,每组Task都是一个Stage,解析时以Shuffle(宽依赖进行数据同步时会产生Shuffle)为边界反向解析构建Stage;每次遇到Shuffle会产生新的Stage,然后以一个个TaskSet(每个Stage中的Tasks会封装成一个TaskSet)的形式提交给底层的任务调度器TaskScheduler。DAGScheduler需要记录那些RDD被存入磁盘,寻求Task的最优化调度(如Stage内部数据的本地性),监视Shuffle跨节点数据的状态,失败重新提交该Stage。

DAGScheduler的核心工作是进行Stage的划分,Stage划分的依据是RDD的宽窄依赖,父RDD的一个分区同时被多个子RDD分区依赖称为宽依赖,父RDD分区只被一个子RDD分区依赖称为窄依赖。

Spark Application因为不同的Action出发多个Job,每个Job由一个或多个Stage组成,后面的Stage依赖于前面的Stage。Spark在在Job的提交过程中进行Stage的划分以及确定Task的最佳位置,Stage划分以后才进行计算;Task的最佳位置及利用本地数据进行计算,本地数据即为数据就在当前内存中。DAGScheduler利用RDD自身的getPreferedLocations中的数据计算数据的本地性,getPreferedLocations中标明了每个Partition的数据本地性。

 3.TaskScheduler

TaskScheduler针对Task具体的执行过程,也是针对任务而言。

TaskScheduler的核心任务是提交TaskSet到集群进行运算并汇报结果。

  a. 为TaskSet创建和维护一个TaskSetManager,并追踪任务的本地性以及错误信息

  b. 遇到Straggle任务时,会放到其他节点重试

  c. 向DAGScheduler汇报任务执行情况,包括在Shuffle输出丢失的时候报告fetch failed错误等信息。

TaskSchduler需要确定Task任务使用的计算资源,即需要根据计算本地性原则确定Task具体要运行在哪个ExecutorBackend中。

TaskScheduler是从具体计算的角度考虑本地性,区别于DAGScheduler从数据层面考虑的本地性。

TaskSchedulerImpl是TaskScheduler的子类,通过resourceOffers方法确定Task任务具体运行的ExecutorBackend,具体过程如下:

  1. 通过Random.shuffle方法重新洗牌所有计算资源,以寻求计算的负载均衡;

  2. ExecutorBackend的cores个数声明类型为TaskDescription的ArrayBuffer数组;

  3. 如果有新的ExecutorBackend分配给我们的Job,此时会调用executorAdded来获得新的完整的可用计算资源;

  4. 寻求最高级别的优先级本地性;

 /**
   * Called by cluster manager to offer resources on slaves. We respond by asking our active task
   * sets for tasks in order of priority. We fill each node with tasks in a round-robin manner so
   * that tasks are balanced across the cluster.
   */
  def resourceOffers(offers: IndexedSeq[WorkerOffer]): Seq[Seq[TaskDescription]] = synchronized {
    ...
    // Randomly shuffle offers to avoid always placing tasks on the same set of workers.
    val shuffledOffers = Random.shuffle(offers)
    // Build a list of tasks to assign to each worker.
    val tasks = shuffledOffers.map(o => new ArrayBuffer[TaskDescription](o.cores))
    val availableCpus = shuffledOffers.map(o => o.cores).toArray
    val sortedTaskSets = rootPool.getSortedTaskSetQueue
    for (taskSet <- sortedTaskSets) {
      logDebug("parentName: %s, name: %s, runningTasks: %s".format(
        taskSet.parent.name, taskSet.name, taskSet.runningTasks))
      if (newExecAvail) {
        taskSet.executorAdded()
      }
    }
   //以下代码计算最高级别的优先级本地性
    // Take each TaskSet in our scheduling order, and then offer it each node in increasing order
    // of locality levels so that it gets a chance to launch local tasks on all of them.
    // NOTE: the preferredLocality order: PROCESS_LOCAL, NODE_LOCAL, NO_PREF, RACK_LOCAL, ANY
    for (taskSet <- sortedTaskSets) {
      var launchedAnyTask = false
      var launchedTaskAtCurrentMaxLocality = false
      for (currentMaxLocality <- taskSet.myLocalityLevels) {
        do {
          launchedTaskAtCurrentMaxLocality = resourceOfferSingleTaskSet(
            taskSet, currentMaxLocality, shuffledOffers, availableCpus, tasks)
          launchedAnyTask |= launchedTaskAtCurrentMaxLocality
        } while (launchedTaskAtCurrentMaxLocality)
      }
      if (!launchedAnyTask) {
        taskSet.abortIfCompletelyBlacklisted(hostToExecutors)
      }
    }

    if (tasks.size > 0) {
      hasLaunchedTask = true
    }
    return tasks
  }

  5. 通过调用TaskSetManager的resourceOffer最终确定每个Task具体运行的ExecutorBackend的Locality Level;

  6. 通过launchTasks把任务发送给ExecutorBackend执行。launchTasks首先会进行序列化,序列化的大小不能超过默认设置128M,否则报错。由参数    

      spark.rpc.message.maxSize设置。

 4. SchedulerBackend

  SchedulerBackend针对资源,所以该接口在不同的部署模式下会创建不同的子类对象(YarnSchedulerBackend)来进行资源管理,如StandaloneSchedulerBackend是在Standalone模式下的管理对象,负责收集和分配资源给Task使用。

  StandaloneSchedulerBackend在接收到TaskSchedulerImpl的submitTasks后,会调用父类CoarseGrainedSchedulerBackend中的reviveOffers方法,最终调用makOffers方法分配资源执行Task。

  makOffers方法的执行过程:

  1. 首先过滤出Active状态的Executor,然后构建代表Executor资源可用的WorkerOffer(此处为构建可用的资源);

  2. 调用TaskSchedulerImpl的resourceOffers得到TaskDescrition的二维数组,包含Task ID、Executor ID、Task Index等Task执行需要的信息;

  3. 回调DriverEndPoint的launchTask给每个Task对应的Executor发执行Task的LaunchTask信息。

    // Make fake resource offers on all executors
    private def makeOffers() {
      // Filter out executors under killing
      val activeExecutors = executorDataMap.filterKeys(executorIsAlive)
      val workOffers = activeExecutors.map { case (id, executorData) =>
        new WorkerOffer(id, executorData.executorHost, executorData.freeCores)
      }.toIndexedSeq
      launchTasks(scheduler.resourceOffers(workOffers))
    }

  

原文地址:https://www.cnblogs.com/beichenroot/p/11414173.html

时间: 2024-10-16 04:32:02

Spark中资源与任务的关系的相关文章

Tachyon在Spark中的作用(Tachyon: Reliable, Memory Speed Storage for Cluster Computing Frameworks 论文阅读翻译)

摘要: Tachyon是一种分布式文件系统,能够借助集群计算框架使得数据以内存的速度进行共享.当今的缓存技术优化了read过程,可是,write过程由于须要容错机制,就须要通过网络或者是磁盘进行复制操作.Tachyon通过将"血统"技术引入到存储层进而消除了这个瓶颈.创建一个长期的以"血统机制"为基础的存储系统的关键挑战是失败情况发生的时候及时地进行数据恢复.Tachyon通过引入一种检查点的算法来解决问题,这样的方法保证了恢复过程的有限开销以及通过资源调度器下进行

(版本定制)第17课:Spark Streaming资源动态申请和动态控制消费速率原理剖析

本期内容: 1.Spark Streaming资源动态分配 2.Spark Streaming动态控制消费速率 为什么需要动态? a)Spark默认情况下粗粒度的,先分配好资源再计算.对于Spark Streaming而言有高峰值和低峰值,但是他们需要的资源是不一样的,如果按照高峰值的角度的话,就会有大量的资源浪费. b) Spark Streaming不断的运行,对资源消耗和管理也是我们要考虑的因素. Spark Streaming资源动态调整的时候会面临挑战: Spark Streaming

第17课:Spark Streaming资源动态申请和动态控制消费速率原理剖析

本期内容: Spark Streaming资源动态分配 Spark Streaming动态控制消费速率 为什么需要动态? Spark默认情况下粗粒度的,先分配好资源再计算.而Spark Streaming有高峰值和低峰值,但是他们需要的资源是不一样的,如果按照高峰值的角度的话,就会有大量的资源浪费. Spark Streaming不断的运行,对资源消耗和管理也是我们要考虑的因素. Spark Streaming资源动态调整的时候会面临挑战: Spark Streaming是按照Batch Dur

Spark Streaming资源动态申请和动态控制消费速率剖析

本期内容 : Spark Streaming资源动态分配 Spark Streaming动态控制消费速率 为什么需要动态处理 : Spark 属于粗粒度资源分配,也就是在默认情况下是先分配好资源然后再进行计算,粗粒度有个好处,因为资源是提前给你分配好,当有计算任务的时候直接使用就可以了, 粗粒度不好的方面就是从Spark  Streaming角度讲有高峰值.低峰值,在高与低峰值时候需要的资源是不一样的,如果资源分配按照高峰值考虑的话,在低峰值就是对资源的浪费, 随着Spark Streaming

spark中的RDD以及DAG

今天,我们就先聊一下spark中的DAG以及RDD的相关的内容 1.DAG:有向无环图:有方向,无闭环,代表着数据的流向,这个DAG的边界则是Action方法的执行 2.如何将DAG切分stage,stage切分的依据:有宽依赖的时候要进行切分(shuffle的时候, 也就是数据有网络的传递的时候),则一个wordCount有两个stage, 一个是reduceByKey之前的,一个事reduceByKey之后的(图1), 则我们可以这样的理解,当我们要进行提交上游的数据的时候, 此时我们可以认

为什么spark中只有ALS

WRMF is like the classic rock of implicit matrix factorization. It may not be the trendiest, but it will never go out of style --Ethan Rosenthal 前言 spark平台推出至今已经地带到2.1的版本了,很多地方都有了重要的更新,加入了很多新的东西.但是在协同过滤这一块却一直以来都只有ALS一种算法.同样是大规模计算平台,Hadoop中的机器学习算法库Mah

Spring中资源的加载ResourceLoader

Spring中资源的加载是定义在ResourceLoader接口中的,它跟前面提到的抽象资源的关系如下: ResourceLoader的源码 [java] view plain copy public interface ResourceLoader { /** Pseudo URL prefix for loading from the class path: "classpath:" */ String CLASSPATH_URL_PREFIX = ResourceUtils.CL

SPARK 中 DriverMemory和ExecutorMemory

spark中,不论spark-shell还是spark-submit,都可以设置memory大小,但是有的同学会发现有两个memory可以设置.分别是driver memory 和executor memory. 从名字上大概可以猜出大概.具体就是说driver memory并不是master分配了多少内存,而是管理多少内存.换言之就是为当前应用分配了多少内存. executor memory是每个节点上占用的内存.每一个节点可使用内存. 单独设置其中一个,集群仍能正常启动. 实际应用中,初步感

介绍ListView中的几种位置关系和LayoutAnimation在listview中的应用

ListView的属性: 1.ListView的XML属性 android:divider//在列表条目之间显示的drawable或color android:dividerHeight//用来指定divider的高度 android:entries//构成ListView的数组资源的引用.对于某些固定的资源,这个属性提供了比在程序中添加资源更加简便的方式 android:footerDividersEnabled//当设为false时,ListView将不会在各个footer之间绘制divid