深度学习调参经验汇总

此篇文章是在原创教程这个栏目下,但实际上是一篇汇总整理文章。相信大家在做深度学习时对调参尤为无奈,经验不足乱调一通,或者参数太多无从下手,我也如此。希望通过此文汇总网上一些调参的经验方法,供大家参考。此文会对网上每一篇调参文章做简练的总结与提炼,以此为此文的组成单元,并附上原文的链接。如果遇到不对的地方,欢迎指正~本文也将不定期更新,最后祝大家调参(炼金)顺利!

有多少人工,就有多少智能!(笑哭脸)

人工智障

炼金大法

你已经是成熟的算法了,要学会自己调参

正文开始


UNIT 1

  • case1:网络错误没有正确训练,损失完全不收敛。可能两种原因:1,错误的input data,网络无法学习。 2,错误的网络,网络无法学习。解决办法:(1)请检测自己的数据是否存在可以学习的信息,这个数据集中的数值是否泛化(防止过大或过小的数值破坏学习)。(2)如果是错误的数据则你需要去再次获得正确的数据,如果是数据的数值异常我们可以使用zscore函数来解决这个问题(3)如果是网络的错误,则希望调整网络,包括:网络深度,非线性程度,分类器的种类等等。
  • case2:部分收敛。可能原因:1.underfitting,就是网络的分类太简单了没办法去分类,因为没办法分类就是没办法学到正确的知识。2.overfitting,就是网络的分类太复杂了以至于它可以学习数据中的每一个信息甚至是错误的信息他都可以学习。解决办法:(1)underfitting: 增加网络的复杂度(深度),降低learning rate,优化数据集,增加网络的非线性度(ReLu),采用batch normalization。(2)overfitting: 丰富数据,增加网络的稀疏度,降低网络的复杂度(深度),L1 regularization,L2 regulariztion,添加Dropout,Early stopping,适当降低Learning rate,适当减少epoch的次数,
  • case3:全部收敛但效果不好。这是个好的开始,接下来我们要做的就是微调一些参数。解决办法:调整方法就是保持其他参数不变,只调整一个参数。这里需要调整的参数会有:learning rate,minibatch size,epoch,filter size,number of filter

原文链接:https://blog.csdn.net/qq_20259459/article/details/70316511


UNIT 2

  • 好的实验环境是成功的一半:(1)将各个参数的设置部分集中在一起。如果参数的设置分布在代码的各个地方,那么修改的过程想必会非常痛苦。(2)可以输出模型的损失函数值以及训练集和验证集上的准确率。(3)可以考虑设计一个子程序,可以根据给定的参数,启动训练并监控和周期性保存评估结果。再由一个主程序,分配参数以及并行启动一系列子程序。
  • 画图:画图是一个很好的习惯,一般是训练数据遍历一轮以后,就输出一下训练集和验证集准确率。同时画到一张图上。这样训练一段时间以后,如果模型一直没有收敛,那么就可以停止训练,尝试其他参数了,以节省时间。 如果训练到最后,训练集,测试集准确率都很低,那么说明模型有可能欠拟合。那么后续调节参数方向,就是增强模型的拟合能力。例如增加网络层数,增加节点数,减少dropout值,减少L2正则值等等。 如果训练集准确率较高,测试集准确率比较低,那么模型有可能过拟合,这个时候就需要向提高模型泛化能力的方向,调节参数。
  • 从粗到细分阶段调参:(1)建议先参考相关论文,以论文中给出的参数作为初始参数。至少论文中的参数,是个不差的结果。(2)如果找不到参考,那么只能自己尝试了。可以先从比较重要,对实验结果影响比较大的参数开始,同时固定其他参数,得到一个差不多的结果以后,在这个结果的基础上,再调其他参数。例如学习率一般就比正则值,dropout值重要的话,学习率设置的不合适,不仅结果可能变差,模型甚至会无法收敛。(3)如果实在找不到一组参数,可以让模型收敛。那么就需要检查,是不是其他地方出了问题,例如模型实现,数据等等。
  • 提高速度:调参只是为了寻找合适的参数,而不是产出最终模型。一般在小数据集上合适的参数,在大数据集上效果也不会太差。因此可以尝试对数据进行精简,以提高速度,在有限的时间内可以尝试更多参数。(1)对训练数据进行采样。例如原来100W条数据,先采样成1W,进行实验看看。(2)减少训练类别。例如手写数字识别任务,原来是10个类别,那么我们可以先在2个类别上训练,看看结果如何。
  • 超参数范围:建议优先在对数尺度上进行超参数搜索。比较典型的是学习率和正则化项,我们可以从诸如0.001 0.01 0.1 1 10,以10为阶数进行尝试。因为他们对训练的影响是相乘的效果。不过有些参数,还是建议在原始尺度上进行搜索,例如dropout值: 0.3 0.5 0.7)。
  • 经验参数:
    • learning rate: 1 0.1 0.01 0.001, 一般从1开始尝试。很少见learning rate大于10的。学习率一般要随着训练进行衰减。衰减系数一般是0.5。 衰减时机,可以是验证集准确率不再上升时,或固定训练多少个周期以后。 不过更建议使用自适应梯度的办法,例如adam,adadelta,rmsprop等,这些一般使用相关论文提供的默认值即可,可以避免再费劲调节学习率。对RNN来说,有个经验,如果RNN要处理的序列比较长,或者RNN层数比较多,那么learning rate一般小一些比较好,否则有可能出现结果不收敛,甚至Nan等问题。
    • 网络层数: 先从1层开始。
    • 每层结点数: 16 32 128,超过1000的情况比较少见。超过1W的从来没有见过。
    • batch size: 128上下开始。batch size值增加,的确能提高训练速度。但是有可能收敛结果变差。如果显存大小允许,可以考虑从一个比较大的值开始尝试。因为batch size太大,一般不会对结果有太大的影响,而batch size太小的话,结果有可能很差。
    • clip c(梯度裁剪): 限制最大梯度,其实是value = sqrt(w1^2+ w2^2….),如果value超过了阈值,就算一个衰减系系数,让value的值等于阈值: 5,10,15
    • dropout: 0.5
    • L2正则:1.0,超过10的很少见。
    • 词向量embedding大小:128,256
    • 正负样本比例: 这个是非常忽视,但是在很多分类问题上,又非常重要的参数。很多人往往习惯使用训练数据中默认的正负类别比例,当训练数据非常不平衡的时候,模型很有可能会偏向数目较大的类别,从而影响最终训练结果。除了尝试训练数据默认的正负类别比例之外,建议对数目较小的样本做过采样,例如进行复制。提高他们的比例,看看效果如何,这个对多分类问题同样适用。 在使用mini-batch方法进行训练的时候,尽量让一个batch内,各类别的比例平衡,这个在图像识别等多分类任务上非常重要。
  • 自动调参:
    • Gird Search. 这个是最常见的。具体说,就是每种参数确定好几个要尝试的值,然后像一个网格一样,把所有参数值的组合遍历一下。优点是实现简单暴力,如果能全部遍历的话,结果比较可靠。缺点是太费时间了,特别像神经网络,一般尝试不了太多的参数组合。
    • Random Search。Bengio在Random Search for Hyper-Parameter Optimization中指出,Random Search比Gird Search更有效。实际操作的时候,一般也是先用Gird Search的方法,得到所有候选参数,然后每次从中随机选择进行训练。
    • Bayesian Optimization. 贝叶斯优化,考虑到了不同参数对应的实验结果值,因此更节省时间。和网络搜索相比简直就是老牛和跑车的区别。具体原理可以参考这个论文: Practical Bayesian Optimization of Machine Learning Algorithms ,这里同时推荐两个实现了贝叶斯调参的Python库,可以上手即用:

原文链接:https://blog.csdn.net/anshiquanshu/article/details/77938831


UNIT 3

一些大的注意事项
  • 刚开始, 先上小规模数据,模型往大了放,只要不爆显存,能用256个filter你就别用128个。直接奔着过拟合去。没错,就是训练过拟合网络, 连测试集验证集这些都可以不用。如果小数据量下,这么粗暴的大网络奔着过拟合去都没效果,那么有可能是:模型的输入输出是不是有问题? 代码错误? 模型解决的问题定义是不是有问题? 你对应用场景的理解是不是有错?
  • Loss设计要合理。一般来说分类就是Softmax, 回归就是L2的loss. 但是要注意loss的错误范围(主要是回归), 你预测一个label是10000的值, 模型输出0, 你算算这loss多大, 这还是单变量的情况下. 一般结果都是nan. 所以不仅仅输入要做normalization, 输出也要这么弄。多任务情况下, 各loss想法限制在一个量级上, 或者最终限制在一个量级上, 初期可以着重一个任务的loss。
  • 观察loss胜于观察准确率。准确率虽然是评测指标,但是训练过程中还是要注意loss的。你会发现有些情况下,准确率是突变的,原来一直是0, 可能保持上千迭代, 然后突然变1。要是因为这个你提前中断训练了, 只有老天替你惋惜了. 而loss是不会有这么诡异的情况发生的, 毕竟优化目标是loss。给NN一点时间, 要根据任务留给NN的学习一定空间. 不能说前面一段时间没起色就不管了. 有些情况下就是前面一段时间看不出起色, 然后开始稳定学习。
  • 确认分类网络学习充分。分类网络就是学习类别之间的界限. 你会发现, 网络就是慢慢的从类别模糊到类别清晰的. 怎么发现? 看Softmax输出的概率的分布. 如果是二分类, 你会发现, 刚开始的网络预测都是在0.5上下, 很模糊. 随着学习过程, 网络预测会慢慢的移动到0,1这种极值附近. 所以, 如果你的网络预测分布靠中间, 再学习学习。
  • Learning Rate设置合理。太大: loss爆炸, 或者nan。太小: 半天loss没反映。需要进一步降低了: loss在当前LR下一路降了下来, 但是半天不再降了。如果上面的Loss设计那块你没法合理, 初始情况下容易爆, 先上一个小LR保证不爆, 等loss降下来了, 再慢慢升LR, 之后当然还会慢慢再降LR。
  • 对比训练集和验证集的loss。 判断过拟合, 训练是否足够, 是否需要early stop的依据。
  • 清楚receptive field的大小。CV的任务, context window是很重要的. 所以你对自己模型的receptive field的大小要心中有数. 这个对效果的影响还是很显著的. 特别是用FCN, 大目标需要很大的receptive field。
简短的注意事项
  • 预处理:-mean/std zero-center就够了, PCA, 白化什么的都用不上。
  • shuffle, shuffle, shuffle。
  • 网络原理的理解最重要,CNN的conv这块,你得明白sobel算子的边界检测。
  • Dropout, Dropout, Dropout(不仅仅可以防止过拟合, 其实这相当于做人力成本最低的Ensemble, 当然, 训练起来会比没有Dropout的要慢一点, 同时网络参数你最好相应加一点, 对, 这会再慢一点)。
  • CNN更加适合训练回答是否的问题, 如果任务比较复杂, 考虑先用分类任务训练一个模型再finetune。
  • 无脑用ReLU(CV领域)。
  • 无脑用3x3。
  • 无脑用xavier。
  • LRN一类的, 其实可以不用. 不行可以再拿来试试看。
  • filter数量2^n
  • 多尺度的图片输入(或者网络内部利用多尺度下的结果)有很好的提升效果。
  • 第一层的filter, 数量不要太少. 否则根本学不出来(底层特征很重要)。
  • sgd adam 这些选择上, 看你个人选择. 一般对网络不是决定性的. 反正我无脑用sgd + momentum。
  • batch normalization我一直没用, 虽然我知道这个很好, 我不用仅仅是因为我懒. 所以要鼓励使用batch normalization。
  • 不要完全相信论文里面的东西. 结构什么的觉得可能有效果, 可以拿去试试。
  • 你有95%概率不会使用超过40层的模型。
  • shortcut的联接是有作用的。

原文链接:https://www.imooc.com/article/30562

作者:星空小屋
链接:https://www.jianshu.com/p/05330182463a
来源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。

原文地址:https://www.cnblogs.com/mfryf/p/11393648.html

时间: 2024-10-14 05:21:09

深度学习调参经验汇总的相关文章

深度学习调参策略(二)

超参数(Hyper-Parameter)是困扰神经网络训练的问题之一,因为这些参数不可通过常规方法学习获得. 神经网络经典五大超参数: 学习率(Leraning Rate).权值初始化(Weight Initialization).网络层数(Layers) 单层神经元数(Units).正则惩罚项(Regularizer|Normalization) 这五大超参数使得神经网络更像是一门实践课,而不是理论课. 懂神经网络可能只要一小时,但是调神经网络可能要几天. https://zhuanlan.z

深度学习调参策略(一)

经常会被问到你用深度学习训练模型时怎么样改善你的结果呢?然后每次都懵逼了,一是自己懂的不多,二是实验的不多,三是记性不行忘记了.所以写这篇博客,记录下别人以及自己的一些经验. Ilya Sutskever(Hinton的学生)讲述了有关深度学习的见解及实用建议: 获取数据:确保要有高质量的输入/输出数据集,这个数据集要足够大.具有代表性以及拥有相对清楚的标签.缺乏数据集是很难成功的. 预处理:将数据进行集中是非常重要的,也就是要使数据均值为0,从而使每个维度的每次变动为1.有时,当输入的维度随量

深度学习中的常见问题汇总(一)

深度学习中的常见问题汇总(一) 转自 卷积神经网络的复杂度分析 关于感受野的总结 1.CNN复杂度分析 在深度学习基础网络不断进化的过程中,可以发现新的模型不仅性能有极大地提升,网络的复杂度通常也会更低.深度学习网络模型的复杂度直接关系到其实际应用中的速度与可行性,因此这里总结一下 CNN 复杂度的含义与计算方式. 1.1时间复杂度 通常,我们假设计算机运行一行基础代码需要一次运算,那么模型的时间复杂度即为模型的运算次数,用浮点运算次数 FLOPs(FLoating-point OPeratio

深度学习_调参经验

面对一个图像分类问题,可以有以下步骤: 1.建立一个简单的CNN模型,一方面能够快速地run一个模型,以了解这个任务的难度 卷积层1:卷积核大小3*3,卷积核移动步长1,卷积核个数64,池化大小2*2,池化步长2,池化类型为最大池化,激活函数ReLU. 卷积层2:卷积核大小3*3,卷积核移动步长1,卷积核个数128,池化大小2*2,池化步长2,池化类型为最大池化,激活函数ReLU. 卷积层3:卷积核大小3*3,卷积核移动步长1,卷积核个数256,池化大小2*2,池化步长2,池化类型为最大池化,激

【原】深度学习的一些经验总结和建议 | To do v.s Not To Do

前言:本文同步发布于公众号:Charlotte数据挖掘,欢迎关注,获得最新干货- 昨天看到几篇不同的文章写关于机器学习的to do & not to do,有些观点赞同,有些不赞同,是现在算法岗位这么热门,已经不像几年前一样,可能跑过一些项目.懂点原理就可以了,现在对大家的要求更高,尤其工程能力更不可缺少,只跑过一些iris鸢尾花分类.啤酒与尿布.猫狗分类等的同学需要再提高提高,因为竞争太激烈了,我在这里结合我自己的经验总结一下吧- To Do 做项目时,边搜集数据可以边用已经搜集好的少部分数据

深度学习网络训练技巧汇总

转载请注明:炼丹实验室新开了一个专栏,为什么叫炼丹实验室呢,因为以后会在这个专栏里分享一些关于深度学习相关的实战心得,而深度学习很多人称它为玄学,犹如炼丹一般.不过即使是炼丹也是可以摸索出一些经验规律的,希望和各位炼丹术士一起多多交流. 训练技巧对深度学习来说是非常重要的,作为一门实验性质很强的科学,同样的网络结构使用不同的训练方法训练,结果可能会有很大的差异.这里我总结了近一年来的炼丹心得,分享给大家,也欢迎大家补充指正. 参数初始化. 下面几种方式,随便选一个,结果基本都差不多.但是一定要做

GBDT调参经验

在梯度提升树(GBDT)原理小结中,我们对GBDT的原理做了总结,本文我们就从scikit-learn里GBDT的类库使用方法作一个总结,主要会关注调参中的一些要点. 1. scikit-learn GBDT类库概述 在sacikit-learn中,GradientBoostingClassifier为GBDT的分类类, 而GradientBoostingRegressor为GBDT的回归类.两者的参数类型完全相同,当然有些参数比如损失函数loss的可选择项并不相同.这些参数中,类似于Adabo

神经网络调参经验

对比Mean 和 Max 如果某些动作路径(从神经网络的策略输出中采样)比平均动作路径好得多,那么通过调整策略就有增加奖励的空间.相反,当这个差距缩小时,模型就收敛了; 原文地址:https://www.cnblogs.com/twodoge/p/12080024.html

深度学习网络调参技巧

转自https://zhuanlan.zhihu.com/p/24720954?utm_source=zhihu&utm_medium=social 之前曾经写过一篇文章,讲了一些深度学习训练的技巧,其中包含了部分调参心得:深度学习训练心得.不过由于一般深度学习实验,相比普通机器学习任务,时间较长,因此调参技巧就显得尤为重要.同时个人实践中,又有一些新的调参心得,因此这里单独写一篇文章,谈一下自己对深度学习调参的理解,大家如果有其他技巧,也欢迎多多交流. 好的实验环境是成功的一半 由于深度学习实