【面试】吃透了这些Redis知识点,面试官一定觉得你很NB(干货 | 建议珍藏)

原文:【面试】吃透了这些Redis知识点,面试官一定觉得你很NB(干货 | 建议珍藏)

万字长文,干货满满。

是数据结构而非类型

很多文章都会说,redis支持5种常用的数据类型,这其实是存在很大的歧义。redis里存的都是二进制数据,其实就是字节数组(byte[]),这些字节数据是没有数据类型的,只有把它们按照合理的格式解码后,可以变成一个字符串,整数或对象,此时才具有数据类型。

这一点必须要记住。所以任何东西只要能转化成字节数组(byte[])的,都可以存到redis里。管你是字符串、数字、对象、图片、声音、视频、还是文件,只要变成byte数组。

因此redis里的String指的并不是字符串,它其实表示的是一种最简单的数据结构,即一个key只能对应一个value。这里的key和value都是byte数组,只不过key一般是由一个字符串转换成的byte数组,value则根据实际需要而定。

在特定情况下,对value也会有一些要求,比如要进行自增或自减操作,那value对应的byte数组必须要能被解码成一个数字才行,否则会报错。

那么List这种数据结构,其实表示一个key可以对应多个value,且value之间是有先后顺序的,value值可以重复。

Set这种数据结构,表示一个key可以对应多个value,且value之间是没有先后顺序的,value值也不可以重复。

Hash这种数据结构,表示一个key可以对应多个key-value对,此时这些key-value对之间的先后顺序一般意义不大,这是一个按照名称语义来访问的数据结构,而非位置语义。

Sorted Set这种数据结构,表示一个key可以对应多个value,value之间是有大小排序的,value值不可以重复。每个value都和一个浮点数相关联,该浮点数叫score。元素排序规则是:先按score排序,再按value排序。

相信现在你对这5种数据结构有了更清晰的认识,那它们的对应命令对你来说就是小case了。

集群带来的问题与解决思路

集群带来的好处是显而易见的,比如容量增加、处理能力增强,还可以按需要进行动态的扩容、缩容。但同时也会引入一些新的问题,至少会有下面这两个。

一是数据分配:存数据时应该放到哪个节点上,取数据时应该去哪个节点上找。二是数据移动:集群扩容,新增加节点时,该节点上的数据从何处来;集群缩容,要剔除节点时,该节点上的数据往何处去。

上面这两个问题有一个共同点就是,如何去描述和存储数据与节点的映射关系。又因为数据的位置是由key决定的,所以问题就演变为如何建立起各个key和集群所有节点的关联关系。

集群的节点是相对固定和少数的,虽然有增加节点和剔除节点。但集群里存储的key,则是完全随机、没有规律、不可预测、数量庞多,还非常琐碎。

这就好比一所大学和它的所有学生之间的关系。如果大学和学生直接挂钩的话,一定会比较混乱。现实是它们之间又加入了好几层,首先有院系,其次有专业,再者有年级,最后还有班级。经过这四层映射之后,关系就清爽很多了。

这其实是一个非常重要的结论,这个世界上没有什么问题是不能通过加入一层来解决的。如果有,那就再加入一层。计算机里也是这样的。

redis在数据和节点之间又加入了一层,把这层称为槽(slot),因该槽主要和哈希有关,又叫哈希槽。

最后变成了,节点上放的是槽,槽里放的是数据。槽解决的是粒度问题,相当于把粒度变大了,这样便于数据移动。哈希解决的是映射问题,使用key的哈希值来计算所在的槽,便于数据分配。

可以这样来理解,你的学习桌子上堆满了书,乱的很,想找到某本书非常困难。于是你买了几个大的收纳箱,把这些书按照书名的长度放入不同的收纳箱,然后把这些收纳箱放到桌子上。

这样就变成了,桌子上是收纳箱,收纳箱里是书籍。这样书籍移动很方便,搬起一个箱子就走了。寻找书籍也很方便,只要数一数书名的长度,去对应的箱子里找就行了。

其实我们也没做什么,只是买了几个箱子,按照某种规则把书装入箱子。就这么简单的举动,就彻底改变了原来一盘散沙的状况。是不是有点小小的神奇呢。

一个集群只能有16384个槽,编号0-16383。这些槽会分配给集群中的所有主节点,分配策略没有要求。可以指定哪些编号的槽分配给哪个主节点。集群会记录节点和槽的对应关系。

接下来就需要对key求哈希值,然后对16384取余,余数是几key就落入对应的槽里。slot = CRC16(key) % 16384。

以槽为单位移动数据,因为槽的数目是固定的,处理起来比较容易,这样数据移动问题就解决了。

使用哈希函数计算出key的哈希值,这样就可以算出它对应的槽,然后利用集群存储的槽和节点的映射关系查询出槽所在的节点,于是数据和节点就映射起来了,这样数据分配问题就解决了。

我想说的是,一般的人只会去学习各种技术,高手更在乎如何跳出技术,寻求一种解决方案或思路方向,顺着这个方向走下去,八九不离十能找到你想要的答案。

集群对命令操作的取舍

客户端只要和集群中的一个节点建立链接后,就可以获取到整个集群的所有节点信息。此外还会获取所有哈希槽和节点的对应关系信息,这些信息数据都会在客户端缓存起来,因为这些信息相当有用。

客户端可以向任何节点发送请求,那么拿到一个key后到底该向哪个节点发请求呢?其实就是把集群里的那套key和节点的映射关系理论搬到客户端来就行了。

所以客户端需要实现一个和集群端一样的哈希函数,先计算出key的哈希值,然后再对16384取余,这样就找到了该key对应的哈希槽,利用客户端缓存的槽和节点的对应关系信息,就可以找到该key对应的节点了。

接下来发送请求就可以了。还可以把key和节点的映射关系缓存起来,下次再请求该key时,直接就拿到了它对应的节点,不用再计算一遍了。

理论和现实总是有差距的,集群已经发生了变化,客户端的缓存还没来得及更新。肯定会出现拿到一个key向对应的节点发请求,其实这个key已经不在那个节点上了。此时这个节点应该怎么办?

这个节点可以去key实际所在的节点上拿到数据再返回给客户端,也可以直接告诉客户端key已经不在我这里了,同时附上key现在所在的节点信息,让客户端再去请求一次,类似于HTTP的302重定向。

这其实是个选择问题,也是个哲学问题。结果就是redis集群选择了后者。因此,节点只处理自己拥有的key,对于不拥有的key将返回重定向错误,即-MOVED key 127.0.0.1:6381,客户端重新向这个新节点发送请求。

所以说选择是一种哲学,也是个智慧。稍后再谈这个问题。先来看看另一个情况,和这个问题有些相同点。

redis有一种命令可以一次带多个key,如MGET,我把这些称为多key命令。这个多key命令的请求被发送到一个节点上,这里有一个潜在的问题,不知道大家有没有想到,就是这个命令里的多个key一定都位于那同一个节点上吗?

就分为两种情况了,如果多个key不在同一个节点上,此时节点只能返回重定向错误了,但是多个key完全可能位于多个不同的节点上,此时返回的重定向错误就会非常乱,所以redis集群选择不支持此种情况。

如果多个key位于同一个节点上呢,理论上是没有问题的,redis集群是否支持就和redis的版本有关系了,具体使用时自己测试一下就行了。

在这个过程中我们发现了一件颇有意义的事情,就是让一组相关的key映射到同一个节点上是非常有必要的,这样可以提高效率,通过多key命令一次获取多个值。

那么问题来了,如何给这些key起名字才能让他们落到同一个节点上,难不成都要先计算个哈希值,再取个余数,太麻烦了吧。当然不是这样了,redis已经帮我们想好了。

可以来简单推理下,要想让两个key位于同一个节点上,它们的哈希值必须要一样。要想哈希值一样,传入哈希函数的字符串必须一样。那我们只能传进去两个一模一样的字符串了,那不就变成同一个key了,后面的会覆盖前面的数据。

这里的问题是我们都是拿整个key去计算哈希值,这就导致key和参与计算哈希值的字符串耦合了,需要将它们解耦才行,就是key和参与计算哈希值的字符串有关但是又不一样。

redis基于这个原理为我们提供了方案,叫做key哈希标签。先看例子,{user1000}.following,{user1000}.followers,相信你已经看出了门道,就是仅使用Key中的位于{和}间的字符串参与计算哈希值。

这样可以保证哈希值相同,落到相同的节点上。但是key又是不同的,不会互相覆盖。使用哈希标签把一组相关的key关联了起来,问题就这样被轻松愉快地解决了。

相信你已经发现了,要解决问题靠的是巧妙的奇思妙想,而不是非要用牛逼的技术牛逼的算法。这就是小强,小而强大。

最后再来谈选择的哲学。redis的核心就是以最快的速度进行常用数据结构的key/value存取,以及围绕这些数据结构的运算。对于与核心无关的或会拖累核心的都选择弱化处理或不处理,这样做是为了保证核心的简单、快速和稳定。

其实就是在广度和深度面前,redis选择了深度。所以节点不去处理自己不拥有的key,集群不去支持多key命令。这样一方面可以快速地响应客户端,另一方面可以避免在集群内部有大量的数据传输与合并。

单线程模型

redis集群的每个节点里只有一个线程负责接受和执行所有客户端发送的请求。技术上使用多路复用I/O,使用Linux的epoll函数,这样一个线程就可以管理很多socket连接。

除此之外,选择单线程还有以下这些原因:

1、redis都是对内存的操作,速度极快(10W+QPS)

2、整体的时间主要都是消耗在了网络的传输上

3、如果使用了多线程,则需要多线程同步,这样实现起来会变的复杂

4、线程的加锁时间甚至都超过了对内存操作的时间

5、多线程上下文频繁的切换需要消耗更多的CPU时间

6、还有就是单线程天然支持原子操作,而且单线程的代码写起来更简单

事务

事务大家都知道,就是把多个操作捆绑在一起,要么都执行(成功了),要么一个也不执行(回滚了)。redis也是支持事务的,但可能和你想要的不太一样,一起来看看吧。

redis的事务可以分为两步,定义事务和执行事务。使用multi命令开启一个事务,然后把要执行的所有命令都依次排上去。这就定义好了一个事务。此时使用exec命令来执行这个事务,或使用discard命令来放弃这个事务。

你可能希望在你的事务开始前,你关心的key不想被别人操作,那么可以使用watch命令来监视这些key,如果开始执行前这些key被其它命令操作了则会取消事务的。也可以使用unwatch命令来取消对这些key的监视。

redis事务具有以下特点:

1、如果开始执行事务前出错,则所有命令都不执行

2、一旦开始,则保证所有命令一次性按顺序执行完而不被打断

3、如果执行过程中遇到错误,会继续执行下去,不会停止的

4、对于执行过程中遇到错误,是不会进行回滚的

看完这些,真想问一句话,你这能叫事务吗?很显然,这并不是我们通常认为的事务,因为它连原子性都保证不了。保证不了原子性是因为redis不支持回滚,不过它也给出了不支持的理由。

不支持回滚的理由:

1、redis认为,失败都是由命令使用不当造成

2、redis这样做,是为了保持内部实现简单快速

3、redis还认为,回滚并不能解决所有问题

哈哈,这就是霸王条款,因此,好像使用redis事务的不太多

管道

客户端和集群的交互过程是串行化阻塞式的,即客户端发送了一个命令后必须等到响应回来后才能发第二个命令,这一来一回就是一个往返时间。如果你有很多的命令,都这样一个一个的来进行,会变得很慢。

redis提供了一种管道技术,可以让客户端一次发送多个命令,期间不需要等待服务器端的响应,等所有的命令都发完了,再依次接收这些命令的全部响应。这就极大地节省了许多时间,提升了效率。

聪明的你是不是意识到了另外一个问题,多个命令就是多个key啊,这不就是上面提到的多key操作嘛,那么问题来了,你如何保证这多个key都是同一个节点上的啊,哈哈,redis集群又放弃了对管道的支持。

不过可以在客户端模拟实现,就是使用多个连接往多个节点同时发送命令,然后等待所有的节点都返回了响应,再把它们按照发送命令的顺序整理好,返回给用户代码。哎呀,好麻烦呀。

协议

简单了解下redis的协议,知道redis的数据传输格式。

发送请求的协议:

*参数个数CRLF$参数1的字节数CRLF参数1的数据CRLF...$参数N的字节数CRLF参数N的数据CRLF

例如,SET name lixinjie,实际发送的数据是:

*3\r\n$3\r\nSET\r\n$4\r\nname\r\n$8\r\nlixinjie\r\n

接受响应的协议:

单行回复,第一个字节是+

错误消息,第一个字节是-

整型数字,第一个字节是:

批量回复,第一个字节是$

多个批量回复,第一个字节是*

例如,

+OK\r\n

-ERR Operation against\r\n

:1000\r\n

$6\r\nfoobar\r\n

*2\r\n$3\r\nfoo\r\n$3\r\nbar\r\n

可见redis的协议设计的非常简单。

(END)

编程新说,本号由工作10年

架构师维护,洞察技术本质,

生动幽默有趣,欢迎关注!

原文地址:https://www.cnblogs.com/lonelyxmas/p/10729436.html

时间: 2024-11-05 22:45:46

【面试】吃透了这些Redis知识点,面试官一定觉得你很NB(干货 | 建议珍藏)的相关文章

吃透了这四个MySQL知识点,面试官一定会觉得你很NB

作为一名后端开发,MySQL的使用必不可少,合理的使用索引和索引调优是后端开发者必须掌握的技能之一. 在日常数据库的问题当中,不合理的使用索引占大部分. MySQL是大家工作上最常用的关系型数据库之一,也是面试上必问的知识点. 我们在学会建库.创表等基本操作之后就停止了对MySQL的整个深度的学习与专研. 但随着互联网业务的快速发展. 对于数据库的高并发,高可用等指标的要求也越来越高,所以这个时候,底层的机制.原理慢慢地被人们所重视. 故而很多的一线互联网公司对于数据库的机制原理是面试必问的内容

微软架构详谈,从面试官的角度谈面试:剑指Offer名企面试官精讲典型编程题

前言 我在微软做了很多年的面试官,后面七年多作为把关面试官也面试了很多应聘者.应聘者要想做好面试,确实应把面试当作一门技巧来学习,更重要的是要提高自身的能力.我遇到很多应试者可能自身能力也不差但因为不懂得怎样回答提问,不能很好发挥.也有很多校园来的应聘者也学过数据结构和算法分析,可是到处理具体问题时不能用学过的知识来有效地解决问题.这些朋友读读海涛的这本书,会很受益,在面试中的发挥也会有很大提高.这本书也可以作为很好的教学补充资料,让学生不只学到书本知识,也学到解决问题的能力. 主页 目录 第1

95%的技术面试必考的JVM知识点都在这,另附加分思路!

概述:知识点汇总 jvm的知识点汇总共6个大方向:内存模型.类加载机制.GC垃圾回收是比较重点的内容.性能调优部分偏重实际应用,重点突出实践能力.编译器优化和执行模式部分偏重理论基础,主要掌握知识点. 各个部分的内容如下: 1>内存模型部分:程序计数器.方法区.堆.栈.本地方法栈的作用,保存哪些数据: 2>类加载部分:双亲委派的加载机制以及常用类加载器分别加载哪种类型的类: 3>GC部分:分代回收的思想和依据,以及不同垃圾回收算法实现的思路.适合的场景: 4>性能调优部分:常用的j

《PHP程序员面试笔试宝典》——如何应对面试官的“激将法”语言?

如何巧妙地回答面试官的问题? 本文摘自<PHP程序员面试笔试宝典> "激将法"是面试官用以淘汰求职者的一种惯用方法,它是指面试官采用怀疑.尖锐或咄咄逼人的交流方式来对求职者进行提问的方法.例如,"我觉得你比较缺乏工作经验""我们需要活泼开朗的人,你恐怕不合适""你的教育背景与我们的需求不太适合""你的成绩太差""你的英语没过六级""你的专业和我们不对口"&

[转帖]redis知识点总结

redis面试常问知识点总结 https://www.toutiao.com/i6740199554127233543/ 原创 波波说运维 2019-10-02 00:01:00 概述 今天主要分享一下面试常被问到的一些redis知识点. 1.什么是redis? Redis 是一个基于内存的高性能key-value数据库. 2.Reids的特点 Redis本质上是一个Key-Value类型的内存数据库,很像memcached,整个数据库统统加载在内存当中进行操作,定期通过异步操作把数据库数据fl

redis知识点及常见面试题

redis知识点及常见面试题 参考: https://zm8.sm-tc.cn/?src=l4uLj4zF0NCIiIjRnJGdk5CYjNGckJLQrIqNiZaJnpOWjIvQno2LlpyTmo zQx87OxsfGztGXi5KT&uid=c9712557c9cde8bef666f89d1d708c67&hid=40c90f91312807e0fc0320b8ae fa07f7&pos=2&cid=9&time=1532475858864&fr

Redis知识点总结2

1.Redis作用:(据我自己理解)Redis 是非关系型数据库,存储主要是以key value形式.当对Redis中的数据进行操作的时候,是在内存里面,最后会把内存中的数据存在硬盘里面.所以,这就是他的邮电,既是持久化的数据库,就是在内存中运行的数据.但是有个缺点,就是不适合大量的数据存储,毕竟是在内存里面进行的操作. 2.Redis下载:下载地址:https://github.com/MSOpenTech/redis/releases 3.Redis安装: (1).把下载下来的压缩包解压到一

面试前的准备---C#知识点回顾----03

经过一天的奔波,喜忧参半,不细表 再回看下标题,C#知识点回顾 再看下内容,数据库3NF 原谅我这个标题党 今天继续回忆 1.HTTP中Post和Get区别 这忒简单了吧,大家是不是感觉到兴奋了,长舒一口气了,终于出现了一个可以聊上10分钟的问题了. 根据HTTP规范,Get用于信息获取,而且应该是安全的和幂等的. 参数在URL后,以?分割,以&相连. 根据HTTP规范,Post表示可能修改服务器的资源请求.数据存在HTTP包中 以上最基本的得知道吧,重点可以聊的出现了,安全性. 详细请拜读:h

面试前的准备---C#知识点回顾----01

过完年来,准备找份新工作,虽然手里的工作不错,但树挪死,人挪活.咱不能一直在一个坑里生活一辈子,外面的世界毕竟是很美好的. 为了能正常的找到自己中意的工作,最近是将所有的基础知识拿出来复习了一次.仅作记录,自勉,各位大神不要喷,随意看看就好了. 以下知识点,均摘自面试过程中遇到的题 1.try{} 里面有个Return语句,那么紧跟try后面的Finally{}会不会执行? 答案:会执行,在Return后执行 喜欢研究透的同学可以参考:http://www.cnblogs.com/forcert