谈到斐波那契数列
- 常想到的是递归,由于在电脑中存储数据是开辟栈来存储,若是所要计算的值太大,要面对两个问题,一个是时间问题:对一数的计算,递归和回溯过程中会重复对一个值(例如f(3))进行开辟空间释放空间,因而会十分耗时;另一个问题是空间问题:由于系统分给程序的栈空间是有限的,当数字太大,最终产生的栈空间的情况,即栈溢出,导致我们无法计算。
- 第二个想到的是通过数组来存储,即将每一个计算后的值都存到数组里,虽然解决了在时间上的问题,但也会出现栈溢出,无法计算大的斐波那契数。
为了解决大数问题同时提高时间上的效率我们采用迭代的方法(实际上通过循环来实现)。
下面为其代码描述:
#define _CRT_SECURE_NO_WARNINGS 1
#include <stdio.h>
#include <stdlib.h>
int main()
{
int number;
int first, second, third;
scanf("%d", &number);
first = 1;
second = 1;
if (number < 3)
third = 1;
while (number >= 3)
{
third = first + second;
first = second;
second = third;
number--;
}
printf("%d\n", third);
system("pause");
return 0;
}
在Linux操作系统下可看出两者计算同一个f(n)迭代所需要的时间比递归所需要的时间要少的多多多。。而且所求的数多大都可以,因为没有限制,只是进行加法和赋值运算,也没有需要很多的空间。
通过该例子,可发现迭代的实现往往比递归实现效率高,但并不是递归就没有自身的优点。
递归相当于其他方法,他的可读性很高,另外当一个问题很复杂时,使用迭代或其他方法会很难实现(例如Hanoi问题,青蛙跳台阶问题)此时用递归思想可以将问题简洁明了的解决,这样就补偿了他所带来的运行时开销。
原文地址:https://blog.51cto.com/14240895/2373264
时间: 2024-10-08 02:56:59