5.1_非监督学习之sckit-learn

非监督学习之k-means

K-means通常被称为劳埃德算法,这在数据聚类中是最经典的,也是相对容易理解的模型。算法执行的过程分为4个阶段。

  • 1.首先,随机设K个特征空间内的点作为初始的聚类中心。
  • 2.然后,对于根据每个数据的特征向量,从K个聚类中心中寻找距离最近的一个,并且把该数据标记为这个聚类中心。
  • 3.接着,在所有的数据都被标记过聚类中心之后,根据这些数据新分配的类簇,通过取分配给每个先前质心的所有样本的平均值来创建新的质心重,新对K个聚类中心做计算。
  • 4.最后,计算旧和新质心之间的差异,如果所有的数据点从属的聚类中心与上一次的分配的类簇没有变化,那么迭代就可以停止,否则回到步骤2继续循环。

K均值等于具有小的全对称协方差矩阵的期望最大化算法

sklearn.cluster.KMeans

class sklearn.cluster.KMeans(n_clusters=8, init=‘k-means++‘, n_init=10, max_iter=300, tol=0.0001, precompute_distances=‘auto‘, verbose=0, random_state=None, copy_x=True, n_jobs=1, algorithm=‘auto‘)
  """
  :param n_clusters:要形成的聚类数以及生成的质心数

  :param init:初始化方法,默认为‘k-means ++‘,以智能方式选择k-均值聚类的初始聚类中心,以加速收敛;random,从初始质心数据中随机选择k个观察值(行

  :param n_init:int,默认值:10使用不同质心种子运行k-means算法的时间。最终结果将是n_init连续运行在惯性方面的最佳输出。

  :param n_jobs:int用于计算的作业数量。这可以通过并行计算每个运行的n_init。如果-1使用所有CPU。如果给出1,则不使用任何并行计算代码,这对调试很有用。对于-1以下的n_jobs,使用(n_cpus + 1 + n_jobs)。因此,对于n_jobs = -2,所有CPU都使用一个。

  :param random_state:随机数种子,默认为全局numpy随机数生成器
  """
from sklearn.cluster import KMeans
import numpy as np
X = np.array([[1, 2], [1, 4], [1, 0],[4, 2], [4, 4], [4, 0]])
kmeans = KMeans(n_clusters=2, random_state=0)

方法

fit(X,y=None)

使用X作为训练数据拟合模型

kmeans.fit(X)

predict(X)

预测新的数据所在的类别

kmeans.predict([[0, 0], [4, 4]])
array([0, 1], dtype=int32)

属性

clustercenters

集群中心的点坐标

kmeans.cluster_centers_
array([[ 1.,  2.],
       [ 4.,  2.]])

labels_

每个点的类别

kmeans.labels_

k-means ++

原文地址:https://www.cnblogs.com/alexzhang92/p/10070283.html

时间: 2024-11-02 07:02:14

5.1_非监督学习之sckit-learn的相关文章

Machine Learning — 监督学习与非监督学习

斯坦福大学的Machine Learning课程(讲师是Andrew Ng)公开课是学习机器学习的"圣经",以下内容是听课笔记. 一.何谓机器学习 Machine Learning is field of study that gives computers the ability to learn without being explicitly programmed. 也就是说机器学习不需要制定具体的模型,而是让计算机根据庞大的数据量自己训练模型,与之相对的,例如CFD软件,是建立

监督学习、 非监督学习、 半监督学习

在机器学习(Machine learning)领域,主要有三类不同的学习方法: 监督学习(Supervised learning). 非监督学习(Unsupervised learning). 半监督学习(Semi-supervised learning), 监督学习:通过已有的一部分输入数据与输出数据之间的对应关系,生成一个函数,将输入映射到合适的输出,例如分类.非监督学习:直接对输入数据集进行建模,例如聚类. 半监督学习:综合利用有类标的数据和没有类标的数据,来生成合适的分类函数. 一.监督

Machine Learning——Unsupervised Learning(机器学习之非监督学习)

前面,我们提到了监督学习,在机器学习中,与之对应的是非监督学习.无监督学习的问题是,在未加标签的数据中,试图找到隐藏的结构.因为提供给学习者的实例是未标记的,因此没有错误或报酬信号来评估潜在的解决方案.这区别于监督学习和强化学习无监督学习. 无监督学习是密切相关的统计数据密度估计的问题.然而无监督学习还包括寻求,总结和解释数据的主要特点等诸多技术.在无监督学习使用的许多方法是基于用于处理数据的数据挖掘方法. 我们来看两张图片: 从图中我们可以看到:非监督学习中没有任何的标签或者是有相同的标签或者

如何区分监督学习(supervised learning)和非监督学习(unsupervised learning)

监督学习:简单来说就是给定一定的训练样本(这里一定要注意,样本是既有数据,也有数据对应的结果),利用这个样本进行训练得到一个模型(可以说是一个函数),然后利用这个模型,将所有的输入映射为相应的输出,之后对输出进行简单的判断从而达到了分类(或者说回归)的问题.简单做一个区分,分类就是离散的数据,回归就是连续的数据. 非监督学习:同样,给了样本,但是这个样本是只有数据,但是没有其对应的结果,要求直接对数据进行分析建模. 比如我们去参观一个画展,我们完全对艺术一无所知,但是欣赏完多幅作品之后,我们也能

Machine learning —Machine learning :分类和聚类,监督学习和非监督学习

印象笔记同步分享:Machine Learning-分类和聚类,监督学习和非监督学习

监督学习与非监督学习的区别

以下是摘抄自知乎上对监督学习与非监督学习的总结,觉得写得很形象,于是记下: 这个问题可以回答得很简单:是否有监督(supervised),就看输入数据是否有标签(label).输入数据有标签,则为有监督学习,没标签则为无监督学习 首 先看什么是学习(learning)?一个成语就可概括:举一反三.此处以高考为例,高考的题目在上考场前我们未必做过,但在高中三年我们做过很多很多题 目,懂解题方法,因此考场上面对陌生问题也可以算出答案.机器学习的思路也类似:我们能不能利用一些训练数据(已经做过的题),

什么是监督学习非监督学习,强化学习

机器学习按照学习方式的不同,分为很多的类型,主要的类型分为 监督学习 非监督学习 强化学习 半监督学习 什么是监督学习? 利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练. 正如下图中给出了好多鸭子的特征那样,指示出那些是鸭子哪些不是鸭子,然后让计算机进行学习,计算机要通过学习才能具有识别各种事物和现象的能力. 用来进行学习的材料就是与被识别对象属于同类的有限数量样本,在本例子中指的是哪些选择的鸭子. 除此之外,监督学习中在给予计算机学习样本的同时,还告诉计算各个

第五章 非监督学习

0 写在前面 前两天多看了两章一直都没更新,今天写的时候发现有些忘了,刚好捡起来回顾一下,近来也没什么事,兴趣来了就在图书馆泡一天看看自己喜欢的.再次重复下,这是第一遍,加之基础不好,明年才有可能出去实习,现在主要看看大概的知识框架,后续还会回头细看.扯远啦,步入正题. 相比于监督学习,非监督学习的输入数据没有标签信息,需要通过算法模型来挖掘数据内在的结构和模式.非监督学习主要包括两大类学习方法:数据聚类和特征变量关联. 1 K均值聚类 分类问题属于监督学习范畴,而聚类则是非监督学习.K-mea

监督学习和非监督学习

监督学习 利用标注好信息的样本,经过训练得到一个模型,可以用来预测新的样本 分类 当新来一个数据时,可以自动预测所属类型 应用 对于一幅遥感影像,对其中的部分水体,农田,建筑做好标记通过监督分类的方法得到其余水体.农田.建筑 分类相关的方法 支持向量机:寻找最大化样本间隔的边界 分类决策树 颜色 形状 状态进行分类回归 直线拟合(最小二乘法) 通过已有的训练数据学习一个模型,当新来一个面积数据时,可以自动预测出销售价格 回归的应用 人脸好看程度评分.通过标记分数的图片得出回归模型,输入新的图片就