主成分分析与逐步回归分析的区别

  • 主成分分析:

有一个集合筛选出对这个集合影响较大的n个因素就是主成分分析。

主成分分析的目的是在于降维,其结果是把多个指标归约为少数的几个指标,这少数的几个指标的表现形式一般为原来指标体系中的某几个指标线性组合;逐步回归的目的是为了剔除影响目标值不显著的指标,其结果是保留原指标体系中影响显著的几个指标。

主成分分析本身往往并不是目的,而是达到目的的一种手段。因此,它多用在大型研究项目的某个中间环节。例如,把它用在多重回归中,便产生了主成分回归。另外,它还可以用于聚类、判别分析等。

  • 变量的回归分析(例如R中的update和step):

例如在做线性回归时,逐步回归是为了找出影响目标值显著的特征。

多重回归预测时,当自变量间高度相关时,某些回归参数的估计值极不稳定,甚至出现有悖常理、难以解释的情形。这时,可先采用主成分分析产生若干主成分,它们必定会将相关性较强的变量综合在同一个主成分中,而不同的主成分又是互相独立的。只要多保留几个主成分,原变量的信息不致过多损失。然后,以这些主成分为自变量进行多重回归就不会再出现共线性的困扰。如果原有p个自变量X1,X2,…,Xp,那么,采用全部p个主成分所作回归完全等价于直接对原变量的回归;采用一部分主成分所作回归虽不完全等价于对原变量的回归,但往往能摆脱某些虚假信息,而出现较合理的结果。

以上思路也适用于判别分析,当自变量高度相关时,直接作判别分析同样有多重共线性问题,可先计算自变量的主成分,然后通过主成分估计判别函数。如果变量不是很多可以直接回归分析(step),剔除冗余的变量。

原文地址:https://www.cnblogs.com/Dawn-bin/p/10292267.html

时间: 2024-10-19 08:25:02

主成分分析与逐步回归分析的区别的相关文章

数据挖掘-回归分析

回归分析 回归分析是一种预测性的建模技术,它研究的是因变量(目标)和自变量(预测器,自变量数量可以是单个也可以是多个)之间的关系. 这种技术通常用于预测分析,时间序列模型以及发现变量之间的因果关系. 例如,司机的鲁莽驾驶与道路交通事故数量之间的关系,最好的研究方法就是回归. 回归分析技术区别 回归分析的技术区别是自变量的个数,因变量的类型以及回归线的形状. 回归分析技术 回归分析技术 1.Linear Regression线性回归 类似于一元方程拟合直线使用最小二乘法,对于观测数据,它通过最小化

如何用Python实现常见机器学习算法-1

最近在GitHub上学习了有关python实现常见机器学习算法 目录 一.线性回归 1.代价函数 2.梯度下降算法 3.均值归一化 4.最终运行结果 5.使用scikit-learn库中的线性模型实现 二.逻辑回归 1.代价函数 2.梯度 3.正则化 4.S型函数 5.映射为多项式 6.使用的优化方法 7.运行结果 8.使用scikit-learn库中的逻辑回归模型实现 逻辑回归_手写数字识别_OneVsAll 1.随机显示100个数字 2.OneVsAll 3.手写数字识别 4.预测 5.运行

区别 |相关分析vs回归分析

函数关系 两个变量x和y,当变量x取某个值,y依赖于x确定的关系取相应的确切地值,则称y是x的函数,记为y =f(x).其中x为自变量,y为因变量. 如:某商品销售与销量的关系y=px 相关关系 当一个或几个关联变量取一定值,与之对应的另一变量的值虽不确定,但仍按照某种规律在一定范围内变化.现象之间存在客观的不严格的数量依存关系. (1).变量间的关系不能用函数精确表达 (2).当变量x取某数值时,变量y取值在一定范围内可能有好几个. 如:商品的销量(y)与物价的关系(x),居民消费(y)与收入

A tutorial on Principal Components Analysis | 主成分分析(PCA)教程

A tutorial on Principal Components Analysis 原著:Lindsay I Smith, A tutorial on Principal Components Analysis, February 26, 2002. 翻译:houchaoqun.时间:2017/01/18.出处:http://blog.csdn.net/houchaoqun_xmu  |  http://blog.csdn.net/Houchaoqun_XMU/article/details

基于caffe与MATLAB接口的回归分析与可视化

如果遇到一些问题,可以在这里找下是否有解决方案.本文内容主要分为两部分,第一部分介绍基于caffe的回归分析,包括了数据准备.配置文件等:第二部分介绍了在MATLAB上进行的可视化.(话说本人最近有个课题需要做场景分类,有兴趣可以共同探讨一下). Preparation 预装好caffe on windows,并编译成功MATLAB接口. 通过caffe进行回归分析 通过caffe进行回归分析,在实验上主要分成HDF5数据准备.网络设计.训练.测试.该实验已经有网友做过,可以参考:http://

Kendall’s tau-b,pearson、spearman三种相关性的区别(有空整理信息检索评价指标)

同样可参考: http://blog.csdn.net/wsywl/article/details/5889419 转自:https://www.douban.com/note/267043565/ 测量相关程度的相关系数很多,各种参数的计算方法及特点各异. 连续变量的相关指标: 此时一般用积差相关系数,又称pearson相关系数来表示其相关性的大小,积差相关系数只适用于两变量呈线性相关时.其数值介于-1~1之间,当两变量相关性达到最大,散点呈一条直线时取值为-1或1,正负号表明了相关的方向,如

Python遥感数据主成分分析

原文:http://www.cnblogs.com/leonwen/p/5158947.html 该算法由MatLab移植而来(具体参见上一篇博文).但是最终输出结果却和MatLab不一致,经排查发现在进行调用两者内部函数eig进行求解特征值和特征向量的时候,两者特征值都一致,但是特征向量却不同. 可是,从理论上感觉也说得过去,因为特征向量本来就具有不唯一性.最让人费解的是,就算两者特征向量不一致,可为什么使用PCA的结果却反差很大呢?感觉上来看,好像是Python的不准确行更大一点. 代码如下

降维(一)----说说主成分分析(PCA)的源头

降维(一)----说说主成分分析(PCA)的源头 降维系列: 降维(一)----说说主成分分析(PCA)的源头 降维(二)----Laplacian Eigenmaps --------------------- 主成分分析(PCA) 在很多教程中做了介绍,但是为何通过协方差矩阵的特征值分解能够得到数据的主成分?协方差矩阵和特征值为何如此神奇,我却一直没弄清.今天终于把整个过程整理出来,方便自己学习,也和大家交流. 提出背景 以二维特征为例,两个特征之间可能存在线性关系的(例如这两个特征分别是运

主成分分析(PCA)原理及R语言实现

原理: 主成分分析 - stanford 主成分分析法 - 智库 主成分分析(Principal Component Analysis)原理 主成分分析及R语言案例 - 文库 主成分分析法的原理应用及计算步骤 - 文库 主成分分析之R篇 [机器学习算法实现]主成分分析(PCA)——基于python+numpy scikit-learn中PCA的使用方法 Python 主成分分析PCA 机器学习实战-PCA主成分分析.降维(好) 关于主成分分析的五个问题 主成分分析(PCA)原理详解(推荐) 多变